Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 2797: 237-252, 2024.
Article in English | MEDLINE | ID: mdl-38570464

ABSTRACT

The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.


Subject(s)
Guanine Nucleotide Exchange Factors , ras GTPase-Activating Proteins , Guanosine Triphosphate/metabolism , ras GTPase-Activating Proteins/metabolism , Hydrolysis , Guanine Nucleotide Exchange Factors/metabolism , Magnetic Resonance Spectroscopy , Guanosine Diphosphate/metabolism
2.
Magn Reson Chem ; 62(2): 84-93, 2024 02.
Article in English | MEDLINE | ID: mdl-38098198

ABSTRACT

Pyruvate, an end product of glycolysis, is a master fuel for cellular energy. A portion of cytosolic pyruvate is transported into mitochondria, while the remaining portion is converted reversibly into lactate and alanine. It is suggested that cytosolic lactate and alanine are transported and metabolized inside mitochondria. However, such a mechanism continues to be a topic of intense debate and investigation. As a part of gaining insight into the metabolic fate of the cytosolic lactate and alanine; in this study, the metabolism of mouse skeletal myoblast cells (C2C12) and their isolated mitochondria was probed utilizing stable isotope-labeled forms of the three glycolysis products, viz. [3-13 C1 ]pyruvate, [3-13 C1 ]lactate, and [3-13 C1 ]alanine, as substrates. The uptake and metabolism of each substrate was monitored, separately, in real-time using 1 H-13 C 2D nuclear magnetic resonance (NMR) spectroscopy. The dynamic variation of the levels of the substrates and their metabolic products were quantitated as a function of time. The results demonstrate that all three substrates were transported into mitochondria, and each substrate was metabolized to form the other two metabolites, reversibly. These results provide direct evidence for intracellular pyruvate-lactate-alanine cycling, in which lactate and alanine produced by the cytosolic pyruvate are transported into mitochondria and converted back to pyruvate. Such a mechanism suggests a role for lactate and alanine to replenish mitochondrial pyruvate, the primary source for adenosine triphosphate (ATP) synthesis through oxidative phosphorylation and the electron transport chain. The results highlight the potential of real-time NMR spectroscopy for gaining new insights into cellular and subcellular functions.


Subject(s)
Alanine , Pyruvic Acid , Animals , Mice , Alanine/metabolism , Pyruvic Acid/metabolism , Lactic Acid/metabolism , Mitochondria/metabolism , Magnetic Resonance Spectroscopy/methods
3.
Front Mol Biosci ; 10: 1139919, 2023.
Article in English | MEDLINE | ID: mdl-37719267

ABSTRACT

The E. coli DEAD-Box helicase RhlB is responsible for ATP-dependent unwinding of structured mRNA to facilitate RNA degradation by the protein complex degradosome. The allosteric interaction with complex partner RNase E is necessary to stimulate both, RhlB's ATPase and RNA unwinding activity to levels comparable with other DEAD-Box helicases. However, the structural changes of the helicase RhlB induced by binding of RNase E have not been characterized and how those lead to increased reaction rates has remained unclear. We investigated the origin of this activation for RNA substrates with different topologies. Using NMR spectroscopy and an RNA centered approach, we could show that RNase E binding increases the affinity of RhlB towards a subset of RNA substrates, which leads to increased ATP turnover rates. Most strikingly, our studies revealed that in presence of RNase E (694-790) RhlB induces a conformational change in an RNA duplex with 5'- overhang even in absence of ATP, leading to partial duplex opening. Those results indicate a unique and novel activation mode of RhlB among DEAD-Box helicases, as ATP binding is thought to be an essential prerequisite for RNA unwinding.

4.
Chembiochem ; 24(24): e202300555, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37769151

ABSTRACT

Uridine diphosphate N-acetylglucosamine 2-epimerase (GNE) is a key enzyme in the sialic acid biosynthesis pathway. Sialic acids are primarily terminal carbohydrates on glycans and play fundamental roles in health and disease. In search of effective GNE inhibitors not based on a carbohydrate scaffold, we performed a high-throughput screening campaign of 68,640 drug-like small molecules against recombinant GNE using a UDP detection assay. We validated nine of the primary actives with an orthogonal real-time NMR assay and verified their IC50 values in the low micromolar to nanomolar range manually. Stability and solubility studies revealed three compounds for further evaluation. Thermal shift assays, analytical size exclusion, and interferometric scattering microscopy demonstrated that the GNE inhibitors acted on the oligomeric state of the protein. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed which sections of GNE were shifted upon the addition of the inhibitors. In summary, we have identified three small molecules as GNE inhibitors with high potency in vitro, which serve as promising candidates to modulate sialic acid biosynthesis in more complex systems.


Subject(s)
Carbohydrate Epimerases , N-Acetylneuraminic Acid , Humans , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Sialic Acids/chemistry , Carbohydrates , Polysaccharides
5.
J Magn Reson ; 350: 107431, 2023 05.
Article in English | MEDLINE | ID: mdl-37058954

ABSTRACT

Protein quality control systems are essential to maintain a healthy proteome. They often consist of an unfoldase unit, typically an AAA+ ATPase, coupled with a protease unit. In all kingdoms of life, they function to eliminate misfolded proteins, and thus prevent that their aggregates do harm to the cell, and to rapidly regulate protein levels in the presence of environmental changes. Despite the huge progress made in the past two decades in understanding the mechanism of function of protein degradation systems, the fate of the substrate during the unfolding and proteolytic processes remains poorly understood. Here we exploit an NMR-based approach to monitor GFP processing by the archaeal PAN unfoldase and the PAN-20S degradation system in real time. We find that PAN-dependent unfolding of GFP does not involve the release of partially-folded GFP molecules resulting from futile unfolding attempts. In contrast, once stably engaged with PAN, GFP molecules are efficiently transferred to the proteolytic chamber of the 20S subunit, despite the only weak affinity of PAN for the 20S subunit in the absence of substrate. This is essential to guarantee that unfolded but not proteolyzed proteins are not released into solution, where they would form toxic aggregates. The results of our studies are in good agreement with previous results derived from real-time small-angle-neutron-scattering experiments and have the advantage of allowing the investigation of substrates and products at amino-acid resolution.


Subject(s)
Molecular Chaperones
6.
Chemistry ; 28(71): e202202752, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36134500

ABSTRACT

Wavelength-independent conversion of organic photoswitches in the photostationary state is a rare phenomenon that opens up a way for many practical applications. In this work, three fused bis(hemi-indigo) derivatives with different substitution patterns were synthesized and their photoswitching was investigated by optical spectroscopy, real-time NMR spectroscopy and TD-DFT calculations. We disclosed that the Z-E photoisomerization of the meta-bis(hemi-indigo) derivative was remarkably independent of the irradiation wavelength from UV up to yellow light. The wavelength-independent forward photoswitching together with the inhibited backward photoisomerization, high thermal stability of the photoinduced isomers as well as significant overlap between the photoswitch absorption and the solar spectrum allows to suggest bis(hemi-indigo) derivatives as promising candidates for molecular solar thermal energy storage (MOST) systems.

7.
J Biol Chem ; 298(8): 102162, 2022 08.
Article in English | MEDLINE | ID: mdl-35724960

ABSTRACT

Transthyretin (TTR) amyloidosis is associated with tissue deposition of TTR aggregates. TTR aggregation is initiated by dissociation of the native tetramer to form a monomeric intermediate, which locally unfolds and assembles into soluble oligomers and higher-order aggregates. However, a detailed mechanistic understanding requires kinetic and structural characterization of the low population intermediates formed. Here, we show that the monomeric intermediate exchanges with an ensemble of oligomers on the millisecond timescale. This transient and reversible exchange causes broadening of the 19F resonance of a trifluoromethyl probe coupled to the monomeric intermediate at S85C. We show the 19F linewidth and R2 relaxation rate increase with increasing concentration of the oligomer. Furthermore, introduction of 19F probes at additional TTR sites yielded distinct 19F chemical shifts for the TTR tetramer and monomer when the trifluoromethyl probe was attached at S100C, located near the same subunit interface as S85C, but not with probes attached at S46C or E63C, which are distant from any interfaces. The 19F probe at E63C shows that part of the DE loop, which is solvent accessible in the tetramer, becomes more buried in the NMR-visible oligomers. Finally, using backbone amides as probes, we show that parts of the EF helix and H-strand become highly flexible in the otherwise structured monomeric intermediate at acidic pH. We further find that TTR aggregation can be reversed by increasing pH. Taken together, this work provides insights into location-dependent conformational changes in the reversible early steps of a kinetically concerted TTR aggregation pathway.


Subject(s)
Amyloidosis , Prealbumin , Protein Aggregates , Amyloid/chemistry , Kinetics , Prealbumin/chemistry , Protein Aggregation, Pathological , Protein Conformation
8.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1270-1281, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34605430

ABSTRACT

Structure-based drug development suffers from high attrition rates due to the poor activity of lead compounds in cellular and animal models caused by low cell penetrance, off-target binding or changes in the conformation of the target protein in the cellular environment. The latter two effects cause a change in the apparent binding affinity of the compound, which is indirectly assessed by cellular activity assays. To date, direct measurement of the intracellular binding affinity remains a challenging task. In this work, in-cell NMR spectroscopy was applied to measure intracellular dissociation constants in the nanomolar range by means of protein-observed competition binding experiments. Competition binding curves relative to a reference compound could be retrieved either from a series of independent cell samples or from a single real-time NMR bioreactor run. The method was validated using a set of sulfonamide-based inhibitors of human carbonic anhydrase II with known activity in the subnanomolar to submicromolar range. The intracellular affinities were similar to those obtained in vitro, indicating that these compounds selectively bind to the intracellular target. In principle, the approach can be applied to any soluble intracellular target that gives rise to measurable chemical shift changes upon ligand binding.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/metabolism , Magnetic Resonance Spectroscopy/methods , Sulfonamides/metabolism , Binding, Competitive , Carbonic Anhydrase Inhibitors/pharmacology , Humans , Protein Binding , Structure-Activity Relationship , Sulfonamides/pharmacology , Thermodynamics
9.
Methods Mol Biol ; 2262: 169-182, 2021.
Article in English | MEDLINE | ID: mdl-33977476

ABSTRACT

RAS oncoproteins exhibit a switch-like behavior to drive diverse signaling cascades. In the active GTP-bound state, a conformational change occurs in these enzymes that enables interaction with downstream effectors. Nucleotide-dependent conformational exchange is easily detected with real-time NMR (RT-NMR) spectroscopy. RT-NMR has been firmly established as an effective assay to measure RAS oncoprotein nucleotide exchange and GTP hydrolysis kinetics and can further determine the regulatory activity of guanine exchange factors (GEFs) and GTPase activating proteins (GAPs). It is now possible to multiplex these assays, allowing for the precise monitoring of activation states for mixtures of RAS oncoproteins or other RAS superfamily GTPases. Here, we describe the protocols necessary to express and purify isotopically labeled RAS and detail how to carry out an RT-NMR assay on a singular RAS protein or on a mixture of small GTPases.


Subject(s)
GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism , Magnetic Resonance Spectroscopy/methods , ras Proteins/metabolism , Humans , Hydrolysis , Kinetics , Protein Binding , Signal Transduction
10.
Structure ; 29(9): 1065-1073.e4, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33974880

ABSTRACT

Tim chaperones transport membrane proteins to the two mitochondrial membranes. TIM9·10, a 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase TIM22. The subunit composition of TIM9·10·12 remains debated. Joint NMR, small-angle X-ray scattering, and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, with a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). Both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes timescale. NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short α helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange allows mitochondria to control their level of inter-membrane space chaperones.


Subject(s)
Mitochondrial Precursor Protein Import Complex Proteins/chemistry , Protein Multimerization , Saccharomyces cerevisiae Proteins/chemistry , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Saccharomyces cerevisiae Proteins/metabolism
11.
Angew Chem Int Ed Engl ; 60(19): 10895-10901, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33539622

ABSTRACT

We investigated the folding kinetics of G-quadruplex (G4) structures by comparing the K+ -induced folding of an RNA G4 derived from the human telomeric repeat-containing RNA (TERRA25) with a sequence homologous DNA G4 (wtTel25) using CD spectroscopy and real-time NMR spectroscopy. While DNA G4 folding is biphasic, reveals kinetic partitioning and involves kinetically favoured off-pathway intermediates, RNA G4 folding is faster and monophasic. The differences in kinetics are correlated to the differences in the folded conformations of RNA vs. DNA G4s, in particular with regard to the conformation around the glycosidic torsion angle χ that uniformly adopts anti conformations for RNA G4s and both, syn and anti conformation for DNA G4s. Modified DNA G4s with 19 F bound to C2' in arabino configuration adopt exclusively anti conformations for χ. These fluoro-modified DNA (antiTel25) reveal faster folding kinetics and monomorphic conformations similar to RNA G4s, suggesting the correlation between folding kinetics and pathways with differences in χ angle preferences in DNA and RNA, respectively.


Subject(s)
DNA/chemistry , RNA/chemistry , Telomere/chemistry , G-Quadruplexes , Humans , Nuclear Magnetic Resonance, Biomolecular
12.
Proc Natl Acad Sci U S A ; 117(33): 19953-19962, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32737158

ABSTRACT

Protein conformational changes associated with ligand binding, especially those involving intrinsically disordered proteins, are mediated by tightly coupled intra- and intermolecular events. Such reactions are often discussed in terms of two limiting kinetic mechanisms, conformational selection (CS), where folding precedes binding, and induced fit (IF), where binding precedes folding. It has been shown that coupled folding/binding reactions can proceed along both CS and IF pathways with the flux ratio depending on conditions such as ligand concentration. However, the structural and energetic basis of such complex reactions remains poorly understood. Therefore, we used experimental, theoretical, and computational approaches to explore structural and energetic aspects of the coupled-folding/binding reaction of staphylococcal nuclease in the presence of the substrate analog adenosine-3',5'-diphosphate. Optically monitored equilibrium and kinetic data, combined with a statistical mechanical model, gave deeper insight into the relative importance of specific and Coulombic protein-ligand interactions in governing the reaction mechanism. We also investigated structural aspects of the reaction at the residue level using NMR and all-atom replica-permutation molecular dynamics simulations. Both approaches yielded clear evidence for accumulation of a transient protein-ligand encounter complex early in the reaction under IF-dominant conditions. Quantitative analysis of the equilibrium/kinetic folding revealed that the ligand-dependent CS-to-IF shift resulted from stabilization of the compact transition state primarily by weakly ligand-dependent Coulombic interactions with smaller contributions from specific binding energies. At a more macroscopic level, the CS-to-IF shift was represented as a displacement of the reaction "route" on the free energy surface, which was consistent with a flux analysis.


Subject(s)
Bacterial Proteins/chemistry , Deoxyribonucleases/chemistry , Staphylococcus/enzymology , Bacterial Proteins/metabolism , Deoxyribonucleases/metabolism , Kinetics , Ligands , Molecular Dynamics Simulation , Staphylococcus/chemistry
13.
PeerJ ; 8: e9178, 2020.
Article in English | MEDLINE | ID: mdl-32566392

ABSTRACT

Cataract formation is a slow accumulative process due to protein aggregates promoted by different factors over time. Zinc and copper ions have been reported to induce the formation of aggregates opaque to light in the human gamma D crystallin (HγD) in a concentration and temperature dependent manner. In order to gain insight into the mechanism of metal-induced aggregation of HγD under conditions that mimic more closely the slow, accumulative process of the disease, we have studied the non-equilibrium process with the minimal metal dose that triggers HγD aggregation. Using a wide variety of biophysics techniques such as turbidimetry, dynamic light scattering, fluorescence, nuclear magnetic resonance and computational methods, we obtained information on the molecular mechanisms for the formation of aggregates. Zn(II) ions bind to different regions at the protein, probably with similar affinities. This binding induces a small conformational rearrangement within and between domains and aggregates via the formation of metal bridges without any detectable unfolded intermediates. In contrast, Cu(II)-induced aggregation includes a lag time, in which the N-terminal domain partially unfolds while the C-terminal domain and parts of the N-terminal domain remain in a native-like conformation. This partially unfolded intermediate is prone to form the high-molecular weight aggregates. Our results clearly show that different external factors can promote protein aggregation following different pathways.

14.
Angew Chem Int Ed Engl ; 59(6): 2304-2308, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31730253

ABSTRACT

Current metabolomics approaches utilize cellular metabolite extracts, are destructive, and require high cell numbers. We introduce here an approach that enables the monitoring of cellular metabolism at lower cell numbers by observing the consumption/production of different metabolites over several kinetic data points of up to 48 hours. Our approach does not influence cellular viability, as we optimized the cellular matrix in comparison to other materials used in a variety of in-cell NMR spectroscopy experiments. We are able to monitor real-time metabolism of primary patient cells, which are extremely sensitive to external stress. Measurements are set up in an interleaved manner with short acquisition times (approximately 7 minutes per sample), which allows the monitoring of up to 15 patient samples simultaneously. Further, we implemented our approach for performing tracer-based assays. Our approach will be important not only in the metabolomics fields, but also in individualized diagnostics.


Subject(s)
Magnetic Resonance Spectroscopy , Metabolomics/methods , Cell Line, Tumor , Glucose/metabolism , Humans , Lactic Acid/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Metabolome/drug effects , Staurosporine/analogs & derivatives , Staurosporine/chemistry , Staurosporine/metabolism , Staurosporine/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
15.
Biochim Biophys Acta Gen Subj ; 1864(2): 129346, 2020 02.
Article in English | MEDLINE | ID: mdl-30986508

ABSTRACT

BACKGROUND: APOBEC3F (A3F), a member of the human APOBEC3 (A3) family of cytidine deaminases, acts as an anti-HIV-1 factor by deaminating deoxycytidine in the complementary DNA of the viral genome. A full understanding of the deamination behavior of A3F awaits further investigation. METHODS: The real-time NMR method and uracil-DNA glycosylase assay were used to track the activities of the C-terminal domain (CTD) of A3F at different concentrations of A3F-CTD and ssDNA. The steady-state fluorescence anisotropy measurement was used to examine the binding between A3F-CTD and ssDNA with different lengths. The use of the A3F-CTD N214H mutant, having higher activity than the wild-type, facilitated the tracking of the reactions. RESULTS: A3F-CTD was found to efficiently deaminate the target deoxycytidine in long ssDNA in lower ssDNA concentration conditions ([A3F-CTD] ≫ [ssDNA]), while the target deoxycytidine in short ssDNA is deaminated efficiently in higher ssDNA concentration conditions ([A3F-CTD] ≪ [ssDNA]). This property is quite different from that of the previously studied A3 family member, A3B; the concentrations of the proteins and ssDNA had no effect. CONCLUSIONS: The concentrations of A3F-CTD and ssDNA substrates affect the ssDNA-length-dependence of deamination rate of the A3F-CTD. This unique property of A3F is rationally interpreted on the basis of its binding characteristics with ssDNA. GENERAL SIGNIFICANCE: The discovery of the unique property of A3F regarding the deamination rate deepens the understanding of its counteraction against HIV-1. Our strategy is applicable to investigate the other aspects of the A3 activities, such as those involved in the cancer development.


Subject(s)
Cytosine Deaminase/chemistry , DNA, Single-Stranded/chemistry , Cytidine Deaminase/chemistry , Deamination , Genome, Viral , HIV-1/genetics , Humans , Kinetics , Magnetic Resonance Spectroscopy , Molecular Conformation , Mutation , Oligonucleotides/chemistry , Protein Binding
16.
J Magn Reson ; 308: 106574, 2019 11.
Article in English | MEDLINE | ID: mdl-31541931

ABSTRACT

Solid state NMR is a powerful tool to probe membrane protein structure and dynamics in native lipid membranes. Sample heating during solid state NMR experiments can be caused by magic angle spinning and radio frequency irradiation such heating produces uncertainties in the sample temperature and temperature distribution, which can in turn lead to line broadening and sample deterioration. To measure sample temperatures in real time and to quantify thermal gradients and their dependence on radio frequency irradiation or spinning frequency, we use the chemical shift thermometer TmDOTP, a lanthanide complex. The H6 TmDOTP proton NMR peak has a large chemical shift (-176.3 ppm at 275 K) and it is well resolved from the protein and lipid proton spectrum. Compared to other NMR thermometers (e.g., the proton NMR signal of water), the proton spectrum of TmDOTP, particularly the H6 proton line, exhibits very high thermal sensitivity and resolution. In MAS studies of proteoliposomes we identify two populations of TmDOTP with differing temperatures and dependency on the radio frequency irradiation power. We interpret these populations as arising from the supernatant and the pellet, which is sedimented during sample spinning. In this study, we demonstrate that TmDOTP is an excellent internal standard for monitoring real-time temperatures of biopolymers without changing their properties or obscuring their spectra. Real time temperature calibration is expected to be important for the interpretation of dynamics and other properties of biopolymers.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Oxazoles/chemistry , Pyrimidinones/chemistry , Thermometry/instrumentation , Biopolymers , Calibration , Computer Systems , Indicators and Reagents , Liposomes/chemistry , Magnetic Resonance Spectroscopy/methods , Protons , Radio Waves , Temperature , Thermometers , Thermometry/methods
17.
Proc Natl Acad Sci U S A ; 115(27): E6201-E6208, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915031

ABSTRACT

Aggregation of transthyretin (TTR) is the causative agent for TTR cardiomyopathy and polyneuropathy amyloidoses. Aggregation is initiated by dissociation of the TTR tetramer into a monomeric intermediate, which self-assembles into amyloid. The coupled multiple-step equilibria and low-concentration, aggregation-prone intermediates are challenging to probe using conventional assays. We report a 19F-NMR assay that leverages a highly sensitive trifluoroacetyl probe at a strategic site that gives distinct 19F chemical shifts for the TTR tetramer and monomeric intermediate and enables direct quantification of their populations during the aggregation process. Integration of real-time 19F-NMR and turbidity measurements as a function of temperature allows kinetic and mechanistic dissection of the aggregation pathway of both wild-type and mutant TTR. At physiological temperature, the monomeric intermediate formed by wild-type TTR under mildly acidic conditions rapidly aggregates into species that are invisible to NMR, leading to loss of the NMR signal at the same rate as the turbidity increase. Lower temperature accelerates tetramer dissociation and decelerates monomer tetramerization and oligomerization via reduced hydrophobic interactions associated with packing of a phenylalanine (F87) into a neighboring protomer. As a result, the intermediate accumulates to a higher level, and formation of higher-order aggregates is delayed. Application of this assay to pathogenic (V30M, L55P, and V122I) and protective (T119M) mutants revealed significant differences in behavior. A monomeric intermediate was observed only for V122I: aggregation of V30M and L55P proceeds without an observable monomeric intermediate, whereas the protective mutant T119M remains resistant to tetramer dissociation and aggregation.


Subject(s)
Mutation, Missense , Prealbumin/chemistry , Protein Aggregation, Pathological , Protein Multimerization , Amino Acid Substitution , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Humans , Nuclear Magnetic Resonance, Biomolecular , Prealbumin/genetics , Prealbumin/metabolism , Protein Structure, Quaternary
18.
Methods Mol Biol ; 1688: 155-168, 2018.
Article in English | MEDLINE | ID: mdl-29151209

ABSTRACT

Dissolution dynamic nuclear polarization (D-DNP) is a technique to prepare hyperpolarized nuclear spin states, yielding a signal enhancement of several orders of magnitude for liquid-state NMR. Here, we describe experimental procedures for the application of D-DNP in high-resolution NMR of biochemical compounds, to determine the time evolution of biochemical processes and intermolecular interactions.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Kinetics
19.
ACS Synth Biol ; 7(1): 218-226, 2018 01 19.
Article in English | MEDLINE | ID: mdl-28915016

ABSTRACT

A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.


Subject(s)
Energy Metabolism/physiology , Protein Biosynthesis , Reticulocytes/metabolism , Animals , Cell-Free System , Cycloheximide/pharmacology , Glucose/metabolism , HEK293 Cells , HeLa Cells , Humans , Kinetics , Magnetic Resonance Spectroscopy , Phosphocreatine/metabolism , Protein Biosynthesis/drug effects , Rabbits , Reticulocytes/cytology , Ribosomes/metabolism
20.
J Magn Reson ; 281: 125-129, 2017 08.
Article in English | MEDLINE | ID: mdl-28595119

ABSTRACT

We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.

SELECTION OF CITATIONS
SEARCH DETAIL