Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.278
Filter
1.
Front Microbiol ; 15: 1415329, 2024.
Article in English | MEDLINE | ID: mdl-39113844

ABSTRACT

Some plant-associated microorganisms could improve host plants biotic and abiotic stress tolerance. Imperata cylindrica is a dominant pioneer plant in some abandoned mine lands with higher concentrations of heavy metal (HM). To discover the specific microbiome of I. cylindrica in this extreme environment and evaluate its role, the microbiome of I. cylindrica's seeds and rhizosphere soils from HM heavily contaminated (H) and lightly contaminated (L) sites were studied. It was found that HM-contamination significantly reduced the richness of endophytic bacteria in seeds, but increased the abundance of resistant species, such as Massilia sp. and Duganella sp. Spearman's rank correlation coefficient analysis showed that both Massilia sp. and Duganella sp. showed a significant positive correlation with Zn concentration, indicating that it may have a strong tolerance to Zn. A comparison of the microbiome of rhizosphere soils (RS) and adjacent bare soils (BS) of site H showed that I. cylindrica colonization significantly increased the diversity of fungi in rhizosphere soil and the abundance of Ascomycota associated with soil nutrient cycling. Spearman's rank correlation coefficient analysis showed that Ascomycota was positively correlated with the total nitrogen. Combined with the fact that the total nitrogen content of RS was significantly higher than that of BS, we suppose that Ascomycota may enhance the nitrogen fixation of I. cylindrica, thereby promoting its growth in such an extreme environment. In conclusion, the concentration of HM and nutrient contents in the soil significantly affected the microbial community of rhizosphere soils and seeds of I. cylindrica, in turn, the different microbiomes further affected soil HM concentration and nutrient contents. The survival of I. cylindrica in HM severely contaminated environment may mainly be through recruiting more microorganisms that can enhance its nutrition supply.

2.
Heliyon ; 10(14): e34589, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39113956

ABSTRACT

The Andean kañihua seed (Chenopodium pallidicaule Aellen) is widely used as an ancestral nutraceutical with great industrial potential and is a little-researched seed. It has high biological and nutritional value due to its protein content of 15-19 %, optimal balance of essential amino acids, essential fatty acids, mineral content, vitamins, and non-bitter saponin content. It is a potential source of peptides with different pharmacological activities such as antimicrobials, antioxidants, antihypertensives, and antidiabetics, among others. It has been a functional food in the Altiplano of Peru and Bolivia since the time of the Incas (between the 12th and 16th centuries) and is a functional food proposal for the world. In this bibliographic review, we present a detailed scientific description of the botanical characteristics, genetics, phytochemical composition, bioactives, and nutritional value. The potential uses at an industrial, medical, pharmacological, and biotechnological level and current advances in scientific research on the kañihua seed. In addition, it is an alternative grain to guarantee food security in terms of quantity, quality, and opportunity.

3.
Indian J Occup Environ Med ; 28(2): 148-153, 2024.
Article in English | MEDLINE | ID: mdl-39114103

ABSTRACT

Background: Seed processing workers are exposed to dust particles generated during the processing of seeds, which can have adverse effects on their respiratory health. Aim: to estimate the prevalence and patterns of respiratory morbidity among seed processing workers in Hooghly district, West Bengal, India, and to explore their use of respiratory personal protective equipment (PPE). Methods: A cross sectional observational study was conducted in 5 seed processing plants from December 2022 to February 2023. A sample size of 129 workers was selected using probability proportionate to population size to select seed processing plants and simple random sampling to select workers at selected plants. Data on sociodemographic characteristics, occupational profile, substance use patterns, respiratory PPE use, and respiratory symptoms were collected through structured interviews. Spirometry was performed with a hand held tabletop spirometer (RMS Helios 401) to assess respiratory function. Results: 52.7% of participants reported at least one chronic respiratory symptom, while 17.1% had evident respiratory morbidity based on spirometry results, with most having restrictive patterns (10.1%). Multivariable regression analysis revealed that factors associated with respiratory morbidity included increasing work years of exposure [1.10 (1.02 1.18)], irregular use of respiratory PPE [4.36 (1.22 15.57)], and primary or below education level [6.09 (1.38 26.98)]. Conclusion: The study highlights the high prevalence of respiratory symptoms and morbidity among seed processing workers. It emphasizes the importance of implementing effective respiratory protection measures and raising awareness about occupational lung diseases in this industry. Further research and interventions are needed to improve the respiratory health and well being of seed processing workers.

4.
Front Plant Sci ; 15: 1430695, 2024.
Article in English | MEDLINE | ID: mdl-39114470

ABSTRACT

Background: Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods: Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion: The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.

5.
Int J Biol Macromol ; : 134497, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39116976

ABSTRACT

Sugar signal mediated by Cell wall invertase (CWIN) plays a central role in seed development. In higher plants, invertase inhibitors (INHs) suppress CWIN activities at a post-translational level. In Litchi chinensis cultivar 'Nuomici', impaired CWIN expression is associated with seed abortion. Here, the expression of LcINH1 was significantly higher in the funicle of seed-aborting cultivar 'Nuomici' than big-seeded cultivar 'Heiye'. Promoter analyses found LcINH1 contained a 404 bp repeat fragment with an endosperm regulatory element of Skn-1_motif. LcINH1 and LcCWIN2/5 were located in plasma membrane. LcINH1 was able to interact with LcCWIN5, but not with LcCWIN2. In vitro enzyme activity assay demonstrated that LcINH1 could inhibit CWIN activity. Silencing LcINH1 in 'Nuomici' resulted in normal seed development, paralleled increased CWIN activities and glucose levels. Transcriptome analysis identified 1079 differentially expressed genes (DEGs) in LcINH1-silenced fruits. KEGG analysis showed significant enrichment of DEGs in pathways related to transporters and plant hormone signal transduction. Weighted gene co-expression network analysis indicated that the turquoise module was highly correlated with fructose content, and LcSWEET3b was closely associated with early seed development. These findings suggest that LcINH1 regulates LcCWIN5 activity at the post-translational level to alter sucrose metabolism, thereby affecting early seed development in litchi.

6.
Int J Biol Macromol ; : 134388, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39116978

ABSTRACT

Numerous studies have investigated seed aging, with a particular emphasis on the involvement of reactive oxygen species. Reactive oxygen species diffuse into the nucleus and damage telomeres, resulting in loss of genetic integrity. Telomerase reverse transcriptase (TERT) plays an essential role in maintaining plant genomic stability. Genome-wide analyses of TERT genes in alfalfa (Medicago sativa) have not yet been conducted, leaving a gap in our understanding of the mechanisms underlying seed aging associated with TERT genes. In this study, four MsTERT genes were identified in the alfalfa genome. The expression profiles of the four MsTERT genes during seed germination indicated that MS. gene79077 was significantly upregulated by seed aging. Transgenic seeds overexpressing MS. gene79077 in Arabidopsis exhibited enhanced tolerance to seed aging by reducing the levels of H2O2 and increasing telomere length and telomerase activity. Furthermore, transcript profiling of aging-treated Arabidopsis wild-type and overexpressing seeds showed an aging response in genes related to glutathione-dependent detoxification and antioxidant defense pathways. These results revealed that MS. gene79077 conferred Arabidopsis seed-aging tolerance via modulation of antioxidant defense and telomere homeostasis. This study provides a new way to understand stress-responsive MsTERT genes for the potential genetic improvement of seed vigor.

7.
Article in English | MEDLINE | ID: mdl-39117271

ABSTRACT

BACKGROUND: Sunflower seeds are a popular allergen-free peanut alternative. OBJECTIVE: To describe sunflower seed allergy incidence and characteristics. METHODS: We conducted a retrospective cohort study of patients with sunflower seed allergy from 1995 to 2021 in a pediatric allergy clinic. We described demographics, testing results, atopic comorbidities, and reaction histories of patients with sunflower seed allergy, and calculated the annual cumulative incidence of the allergy. Logistic regression was used to estimate the increase in odds of sunflower seed allergy diagnosis for each year from 1995 to 2021. RESULTS: From 1995 to 2021, we identified 235 patients with sunflower seed allergy. Among patients with sunflower seed allergy, the median age at diagnosis was 3.9 years. Over three quarters of patients had another atopic condition. Half of reactions consisted of mild urticaria or rash, and a quarter met criteria for anaphylaxis. The cumulative incidence ranged from 0% (1995-1999, 2001-2004 and 2006) to 0.38% (2021). From 1995 to 2021, the odds of sunflower seed allergy diagnosis increased annually by 21% (OR 1.21, 95% CI: 1.17-1.25). CONCLUSION: In our single-center cohort of children with sunflower seed allergy, most children were diagnosed in early childhood, had high rates of comorbid atopic conditions, and had high rates of cutaneous reactions to sunflower seed products. Moreover, in our cohort, incidence of sunflower seed allergy increased.

8.
Sci Rep ; 14(1): 17814, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090155

ABSTRACT

Transformer is a well-known power system apparatus utilized in conjunction with solid insulations such as paper and press board, as well as liquid insulations like mineral oil, a petroleum-based fluid. Despite the notable drawbacks associated with mineral oil, such as limited resources for future generations and its non-eco-friendly nature, its usage remains ubiquitous. There is a growing imperative to explore alternative fluids that surpass mineral oil in terms of environmental impact and performance. Amidst the global shift towards green energy, this study focuses on vegetable seed oils such as corn oil, soybean oil, mustard oil, and rice bran oil as potential substitutes. The research evaluates these oils based on key transformer properties including breakdown voltage, water content, interfacial tension, viscosity, acidity, flash point, and fire point. Interestingly, rice bran oil and soybean oil exhibit promising characteristics that suggest they could effectively replace petroleum-based fluids in transformers. Furthermore, the study extends to blending mineral oil with vegetable seed oils in various compositions, incorporating natural and synthetic antioxidant additives ranging from 0 to 1%. Comparative analyses between samples with and without additives reveal that the inclusion of 1% propyl gallate yields outstanding performance improvements. For instance, a blend comprising 25 ml of mineral oil and 25 ml of soybean oil, supplemented with 1% propyl gallate, demonstrates 90% higher effectiveness compared to other blends and additives tested. Moreover, the research employs statistical regression analysis to establish relationships between different parameter variables, providing deeper insights into the performance and compatibility of these blended oils in transformer applications. This comprehensive investigation underscores the potential of vegetable seed oils as viable alternatives to mineral oil, contributing to the advancement of eco-friendly solutions in power systems.

9.
Ecotoxicol Environ Saf ; 283: 116792, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096688

ABSTRACT

Cytochromes P450 monooxygenases (CYP450s) constitute the largest enzymic protein family that is widely present in plants, animals, and microorganisms, participate in numerous metabolic pathways, and play diverse roles in development, metabolism, and defense. Rapeseed (Brassica napus) is an important oil crop worldwide and have many versions of reference genome. However, there is no systemically comparative genome-wide analysis of CYP450 family genes in rapeseed and its parental species B. rapa and B. oleracea. In this study, we identified 765, 293 and 437 CYP450 genes in B. napus, B. rapa and B. oleracea, respectively, which were unevenly located in A01-A10 and/or C01-C09 chromosomes in corresponding species. Phylogenetic relationship analysis indicated that 1745 CYP450 proteins from three Brassica species and Arabidopsis were divided into 4 groups. Whole genome duplication (WGD) or segmental duplication resulted in gene expansion of CYP450 family in three Brassica species. There were 33-83 SSR loci in CYP450 genes of three Brassica species, and numerous transcription factor binding sites were identified in their promoters. A total of 459-777 miRNAs were predicted to target 174-426 CYP450 genes in three Brassica species. Based on transcriptome data, BnCYP450s, BrCYP450s and BoCYP450s were differentially expressed in various tissues. There existed numerous BnCYP450 DEGs in response to pathogens and abiotic stresses. Besides, many BnCYP450 DEGs were involved in the regulation of important traits, such as seed germination, seed ALA content, and yellow-seed. The qRT-PCR experiment confirmed the transcriptome analysis results by validating two representative Sclerotinia-responsive BnCYP450 DEGs as an example. Three BnCYP450s genes (CYP707A1, CYP81F1, CYP81H1) might be regulated by seed-specific transcription factors BnTT1 and BnbZIP67 to participate in the development and metabolism of seed coat and embryo by undertaking related metabolic reactions.

10.
Sci Total Environ ; : 175118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097019

ABSTRACT

Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.

11.
Int J Biol Macromol ; : 134361, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097070

ABSTRACT

The plum seed protein isolates (PSPI) were used to prepare a gel by probiotics fermentation. The effects of fermentation time (from 0 to 12 h) on the physicochemical properties of PSPI gel were evaluated. The results showed that PSPI started to form a gel after 6 h of fermentation, as evidenced by a decrease in pH from 6.6 to 5.2, an increase in particle size from 10 µm to 40 µm, appearance of a new peak with retention time of 10 min in gel filtration high-performance liquid chromatography, and formation of aggregation and porous structure observed by fluorescence and scanning electron microscope. The PSPI gel from 9 h of fermentation exhibited the highest viscosity (318 Pa.s), storage modulus (18,000 Pa), water holding capacity (37 %), and gel strength (21.5 g) due to stronger molecular interactions such as hydrogen bond, electrostatic, hydrophobic interaction and disulfide bond. However, increasing fermentation time over 9 h led to disrupture of PSPI gel. Furthermore, the subunit around 15 kDa of PSPI disappeared after fermentation, indicating that the formation of PSPI gel was induced by both acidification and partial hydrolysis. Our results suggest that PSPI can provide an alternative for developing plant-based gel products.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124897, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39094271

ABSTRACT

Assessing crop seed phenotypic traits is essential for breeding innovations and germplasm enhancement. However, the tough outer layers of thin-shelled seeds present significant challenges for traditional methods aimed at the rapid assessment of their internal structures and quality attributes. This study explores the potential of combining terahertz (THz) time-domain spectroscopy and imaging with semantic segmentation models for the rapid and non-destructive examination of these traits. A total of 120 watermelon seed samples from three distinct varieties, were curated in this study, facilitating a comprehensive analysis of both their outer layers and inner kernels. Utilizing a transmission imaging modality, THz spectral images were acquired and subsequently reconstructed employing a correlation coefficient method. Deep learning-based SegNet and DeepLab V3+ models were employed for automatic tissue segmentation. Our research revealed that DeepLab V3+ significantly surpassed SegNet in both speed and accuracy. Specifically, DeepLab V3+ achieved a pixel accuracy of 96.69 % and an intersection over the union of 91.3 % for the outer layer, with the inner kernel results closely following. These results underscore the proficiency of DeepLab V3+ in distinguishing between the seed coat and kernel, thereby furnishing precise phenotypic trait analyses for seeds with thin shells. Moreover, this study accentuates the instrumental role of deep learning technologies in advancing agricultural research and practices.

13.
Sci Rep ; 14(1): 18158, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103454

ABSTRACT

Nonlinear optics (NLO) and its applications have attracted increasing research interest in recent years owing to their contribution to the development of photonic technology. Accordingly, in this study, we investigated the NLO response of pumpkin seed oil using the spatial self-phase modulation (SSPM) method. Significant NLO characteristics have been experimentally studied at 405 nm and 532 nm continuous wave (CW) laser wavelengths, yielding second-order nonlinear refractive index ( n 2 , t h ) values of 6.54 × 10 - 5 cm 2 / W and 2.73 × 10 - 5 cm 2 / W , respectively. The findings suggest that the absorption of the material leads to higher optical nonlinearity at shorter wavelengths owing to higher thermal effects. Furthermore, we implemented a light-controlled-light system based on the spatial cross-phase modulation (SXPM) technique employing pumpkin seed oil. We successfully achieved all-optical switching by designing the 'ON' and 'OFF' modes. The results of this study can be considered for the future development of NLO applications. Moreover, our work investigates the potential of pumpkin seed oil for designing low-cost and high-efficiency NLO devices, and this contribution opens up a novel practical avenue for oil-based optical devices.

14.
BMC Plant Biol ; 24(1): 757, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112934

ABSTRACT

PURPOSE: Epimedium brevicornu Maxim. is a perennial persistent C3 plant of the genus Epimedium Linn. in the family Berberaceae that exhibits severe physiological and morphological seed dormancy.We placed mature E. brevicornu seeds under nine stratification treatment conditions and explored the mechanisms of influence by combining seed embryo growth status assessment with related metabolic pathways and gene co-expression analysis. RESULTS: We identified 3.9 °C as the optimum cold-stratification temperature of E. brevicornu seeds via a chilling unit (CU) model. The best treatment was variable-temperature stratification (10/20 °C, 12/12 h) for 4 months followed by low-temperature stratification (4 °C) for 3 months (4-3). A total of 63801 differentially expressed genes were annotated to 2587 transcription factors (TFs) in 17 clusters in nine treatments (0-0, 0-3, 1-3, 2-3, 3-3, 4-3, 4-2, 4-1, 4-0). Genes specifically highly expressed in the dormancy release treatment group were significantly enriched in embryo development ending in seed dormancy and fatty acid degradation, indicating the importance of these two processes. Coexpression analysis implied that the TF GRF had the most reciprocal relationships with genes, and multiple interactions centred on zf-HD and YABBY as well as on MYB, GRF, and TCP were observed. CONCLUSION: In this study, analyses of plant hormone signal pathways and fatty acid degradation pathways revealed changes in key genes during the dormancy release of E. brevicornu seeds, providing evidence for the filtering of E. brevicornu seed dormancy-related genes.


Subject(s)
Cold Temperature , Epimedium , Plant Dormancy , Seeds , Transcriptome , Plant Dormancy/genetics , Epimedium/genetics , Epimedium/metabolism , Epimedium/physiology , Seeds/genetics , Seeds/growth & development , Gene Expression Regulation, Plant , Gene Expression Profiling , Genes, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
15.
BMC Plant Biol ; 24(1): 758, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112960

ABSTRACT

Constant-frequency ultrasonic treatment helped to improve seed germination. However, variable-frequency ultrasonic treatment on maize seed germination were rarely reported. In this study, maize seeds were exposed to 20-40 kHz ultrasonic for 40 s. The germination percentage and radicle length of maize seeds increased by 10.4% and 230.5%. Ultrasonic treatment also significantly increased the acid protease, α-amylase, and ß-amylase contents by 96.4%, 73.8%, and 49.1%, respectively. Transcriptome analysis showed that 11,475 differentially expressed genes (DEGs) were found in the ultrasonic treatment and control groups, including 5,695 upregulated and 5,780 downregulated. Metabolic pathways and transcription factors (TFs) were significantly enriched among DEGs after ultrasonic treatment. This included metabolism and genetic information processing, that is, ribosome, proteasome, and pyruvate metabolism, sesquiterpenoid, triterpenoid, and phenylpropanoid biosynthesis, and oxidative phosphorylation, as well as transcription factors in the NAC, MYB, bHLH, WRKY, AP2, bZIP, and ARF families. Variable-frequency ultrasonic treatment increased auxin, gibberellin, and salicylic acid by 5.5%, 37.3%, and 28.9%, respectively. Abscisic acid significantly decreased by 33.2%. The related DEGs were upregulated and downregulated to varying degrees. Seed germination under the abiotic stress conditions of salt stress (NaCl solution), drought (PEG solution), and waterlogging (water-saturated sand bed) under ultrasonic treatment were promoted, radicle length was significantly increased by 30.2%, 30.5%, and 27.3%, respectively; and germination percentage by 14.8%, 20.1%, and 21.6%, respectively. These findings provide new insight into the mechanisms through ultrasonic to promote maize seed germination.


Subject(s)
Germination , Seeds , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/growth & development , Germination/radiation effects , Seeds/radiation effects , Seeds/growth & development , Seeds/genetics , Seeds/physiology , Gene Expression Regulation, Plant , Gene Expression Profiling , Ultrasonic Waves , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Article in English | MEDLINE | ID: mdl-39088734

ABSTRACT

The seed method stands out as a straightforward and efficient approach for fabricating high-performance perovskite solar cells (PSCs). In this study, we propose the utilization of an antisolvent as an additive to induce crystal seeding, thereby facilitating the growth of wide-bandgap perovskite grains. Specifically, we introduce three commonly used antisolvents─ethyl acetate (EA), isopropanol (IPA), and chlorobenzene (CB)─directly into the perovskite precursor solution to generate perovskite seeds, which serve to promote subsequent nucleation. This antisolvent-crystal seeding method (ACSM) results in increased grain sizes, reduced film defects, and overall improved film quality. Consequently, the power conversion efficiencies (PCEs) of 1.647 eV PSCs with EA, IPA, and CB additives are recorded at 19.86%, 20.61%, and 20.45%, respectively, surpassing that of the reference device with a PCE of 18.83%. Furthermore, the stability of the PSCs prepared through ACSM is notably enhanced. Notably, PSCs optimized with IPA retain 75% of the original PCE after being stored in ambient air conditions (25 °C, RH ∼ 15%) for 30 days, better than the CB-added (64%) and the EA-added devices (53%), while the reference devices only retain 31% of the initial PCE. Moreover, even after continuous thermal annealing at 50 °C for 200 h, IPA-assisted devices demonstrate the best stability, followed by those with CB and EA, with the reference exhibiting the poorest stability.

17.
Int J Biol Macromol ; 277(Pt 3): 134300, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097069

ABSTRACT

Extensive bodies of research are dedicated to the study of seed aging with a particular focus on the roles of reactive oxygen species (ROS), and the ensuing oxidative damage during storage, as a primary cause of seed vigor decreasing. ROS diffuse to the nucleus and damage the telomeres, resulting in a loss of genetic integrity. Protection of telomeres 1 (POT1) is a telomeric protein that binds to the telomere region, and plays an essential role in maintaining genomic stability in plants. In this study, there were totally four MsPOT1 genes obtained from alfalfa genome. Expression analysis of four MsPOT1 genes in germinated seed presented the different expressions. Four MsPOT1 genes displayed high expression levels at the early stage of seed germination, Among the four POT1 genes, it was found that MS. gene040108 was significantly up-regulated in the early germination stage of CK seeds, but down-regulated in aged seeds. RT-qPCR assays and RNA-seq data revealed that MsPOT1-X gene was significantly induced by seed aging treatment. Transgenic seeds overexpressing MsPOT1-X gene in Arabidopsis thaliana and Medicago trunctula exhibited enhanced seed vigor, telomere length, telomerase activity associated with reduced H2O2 content. These results would provide a new way to understand aging stress-responsive MsPOT1 genes for genetic improvement of seed vigor. Although a key gene regulating seed vigor was identified in this study, the specific mechanism of MsPOT1-X gene regulating seed vigor needs to be further explored.

18.
J Plant Physiol ; 302: 154316, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39098091

ABSTRACT

ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.

19.
Sci Total Environ ; : 175062, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098422

ABSTRACT

Pollination is crucial for biodiversity and food security. Heterogeneous agricultural landscapes have a positive effect on pollinator abundance and enhance crop production and quality. In this study, we explored the effects of three landscape features (past crop diversity measured as the Equivalent Richness of crop functional Groups in the previous year [ERGp], semi-natural habitat percentage [SNH], and mean field size [MFS]) and pollinator densities (wild bees [WB] and honey bees [HB]) on pollination and seed quantity and quality in rapeseed crops. Surveying the pollinator density in 20 rapeseed fields revealed a positive relationship with ERGp in the landscape. A pollinator exclusion experiment compared bagged and open-pollinated self-compatible rapeseed plants and revealed insect pollination effectiveness (fruits per flower and number of seeds per pod) and seed quality (oil content). Seed parameters were evaluated in relation to pollinator density (WB-HB) and landscape characteristics. The ERGp emerged as a crucial landscape feature that positively impacted WB density. When insect pollinators were excluded, plants exhibited reduced pollination effectiveness and seed quality. Analysis of open-pollinated plants highlighted ERGp as the most influential variable, positively affecting both sets of parameters. The MFS and SNH showed different but important relationships. Total tocopherol and α-tocopherol were positively correlated with pollinator density in HB, whereas WB showed a positive correlation with γ-tocopherol levels. Increased ERGp positively affected pollinator density and pollination effectiveness, thereby improving oilseed rape production quantity and quality. This study provides new insights into agroecosystem management and pollinator-friendly practices.

20.
Article in English | MEDLINE | ID: mdl-39102133

ABSTRACT

Copper oxide nanoparticles (CuONPs) have been produced on a large scale because they can be applied across various fields, especially in nano-enabled healthcare and agricultural products. However, the increasing use of CuONPs leads to their release and accumulation into the environment. The CuONPs uptaken by seeds and their implications on germination behavior have been reported, but little is known or understood about their impact on photosynthesis in seed tissues. To fill knowledge gaps, this study evaluated the effects of CuONP concentrations (0-300 mg L-1) on the photosynthetic activity of Inga laurina seeds. The microscopy data showed that CuONPs had an average size distribution of 57.5 ± 0.7 nm. Copper ion release and production of reactive oxygen species (ROS) by CuONPs were also evaluated by dialysis and spectroscopy experiments, respectively. CuONPs were not able to intrinsically generate ROS and released a low content of Cu2⁺ ions (4.5%, w/w). Time evolution of chlorophyll fluorescence imaging and laser-induced fluorescence spectroscopy were used to monitor the seeds subjected to nanoparticles during 168 h. The data demonstrate that CuONPs affected the steady-state maximum chlorophyll fluorescence ( F m ' ), the photochemical efficiency of photosystem II ( F v / F m ), and non-photochemical quenching ( NPQ ) of Inga laurina seeds over time. Besides, the NPQ significantly increased at the seed development stage, near the root protrusion stage, probably due to energy dissipation at this germination step. Additionally, the results indicated that CuONPs can change the oscillatory rhythms of energy dissipation of the seeds, disturbing the circadian clock. In conclusion, the results indicate that CuONPs can affect the photosynthetic behavior of I. laurina seeds. These findings open opportunities for using chlorophyll fluorescence as a non-destructive tool to evaluate nanoparticle impact on photosynthetic activity in seed tissues.

SELECTION OF CITATIONS
SEARCH DETAIL