Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Microorganisms ; 12(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38258026

ABSTRACT

Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.

2.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949058

ABSTRACT

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Subject(s)
Acyl Carrier Protein , Fatty Acids , Saccharomyces cerevisiae , Acyl Carrier Protein/chemistry , Catalytic Domain , Fatty Acids/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Front Chem ; 11: 1220543, 2023.
Article in English | MEDLINE | ID: mdl-37593106

ABSTRACT

The Dictyostelium discoideum dye-decolorizing peroxidase (DdDyP) is a newly discovered peroxidase, which belongs to a unique class of heme peroxidase family that lacks homology to the known members of plant peroxidase superfamily. DdDyP catalyzes the H2O2-dependent oxidation of a wide-spectrum of substrates ranging from polycyclic dyes to lignin biomass, holding promise for potential industrial and biotechnological applications. To study the molecular mechanism of DdDyP, highly pure and functional protein with a natively incorporated heme is required, however, obtaining a functional DyP-type peroxidase with a natively bound heme is challenging and often requires addition of expensive biosynthesis precursors. Alternatively, a heme in vitro reconstitution approach followed by a chromatographic purification step to remove the excess heme is often used. Here, we show that expressing the DdDyP peroxidase in ×2 YT enriched medium at low temperature (20°C), without adding heme supplement or biosynthetic precursors, allows for a correct native incorporation of heme into the apo-protein, giving rise to a stable protein with a strong Soret peak at 402 nm. Further, we crystallized and determined the native structure of DdDyP at a resolution of 1.95 Å, which verifies the correct heme binding and its geometry. The structural analysis also reveals a binding of two water molecules at the distal site of heme plane bridging the catalytic residues (Arg239 and Asp149) of the GXXDG motif to the heme-Fe(III) via hydrogen bonds. Our results provide new insights into the geometry of native DdDyP active site and its implication on DyP catalysis.

4.
Methods Mol Biol ; 2652: 361-379, 2023.
Article in English | MEDLINE | ID: mdl-37093487

ABSTRACT

Time-resolved serial crystallography is an emerging method to elucidate the structure-function relationship of biomolecular systems at up to atomic resolution. However, to make this demanding method a success, a number of experimental requirements have to be met. In this chapter, we summarize general guidelines and protocols towards performing time-resolved crystallography experiments, with a particular emphasis on sample requirements and preparation but also a brief excursion into reaction initiation.


Subject(s)
Specimen Handling , Crystallography/methods , Time Factors , Crystallography, X-Ray
5.
J Biol Chem ; 299(2): 102855, 2023 02.
Article in English | MEDLINE | ID: mdl-36592927

ABSTRACT

The flavoprotein methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of N5, N10-methylenetetrahydrofolate (CH2-H4folate) to N5-methyltetrahydrofolate (CH3-H4folate), committing a methyl group from the folate cycle to the methionine one. This committed step is the sum of multiple ping-pong electron transfers involving multiple substrates, intermediates, and products all sharing the same active site. Insight into folate substrate binding is needed to better understand this multifunctional active site. Here, we performed activity assays with Thermus thermophilus MTHFR (tMTHFR), which showed pH-dependent inhibition by the substrate analog, N5-formyltetrahydrofolate (CHO-H4folate). Our crystal structure of a tMTHFR•CHO-H4folate complex revealed a unique folate-binding mode; tMTHFR subtly rearranges its active site to form a distinct folate-binding environment. Formation of a novel binding pocket for the CHO-H4folate p-aminobenzoic acid moiety directly affects how bent the folate ligand is and its accommodation in the active site. Comparative analysis of the available active (FAD- and folate-bound) MTHFR complex structures reveals that CHO-H4folate is accommodated in the active site in a conformation that would not support hydride transfer, but rather in a conformation that potentially reports on a different step in the reaction mechanism after this committed step, such as CH2-H4folate ring-opening. This active site remodeling provides insights into the functional relevance of the differential folate-binding modes and their potential roles in the catalytic cycle. The conformational flexibility displayed by tMTHFR demonstrates how a shared active site can use a few amino acid residues in lieu of extra domains to accommodate chemically distinct moieties and functionalities.


Subject(s)
Folic Acid , Methylenetetrahydrofolate Reductase (NADPH2) , Methylenetetrahydrofolate Reductase (NADPH2)/chemistry , Leucovorin/metabolism , Catalytic Domain , Folic Acid/metabolism , Catalysis
6.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269719

ABSTRACT

Enzymes catalyzing the hydrolysis of the N-glycosidic bond in nucleosides and other ribosides (N-ribohydrolases, NHs) with diverse substrate specificities are found in all kingdoms of life. While the overall NH fold is highly conserved, limited substitutions and insertions can account for differences in substrate selection, catalytic efficiency, and distinct structural features. The NH structural module is also employed in monomeric proteins devoid of enzymatic activity with different physiological roles. The homo-oligomeric quaternary structure of active NHs parallels the different catalytic strategies used by each isozyme, while providing a buttressing effect to maintain the active site geometry and allow the conformational changes required for catalysis. The unique features of the NH catalytic strategy and structure make these proteins attractive targets for diverse therapeutic goals in different diseases.


Subject(s)
Nucleosides , Catalysis , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Substrate Specificity
7.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 14-29, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34981758

ABSTRACT

With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.


Subject(s)
Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Synchrotrons , Animals , Data Analysis , Enzymes/chemistry , Humans
8.
Cell Chem Biol ; 28(9): 1333-1346.e7, 2021 09 16.
Article in English | MEDLINE | ID: mdl-33773110

ABSTRACT

Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site ß strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.


Subject(s)
Carbon/metabolism , Lyases/metabolism , Sulfur/metabolism , Bilophila/enzymology , Carbon/chemistry , Crystallography, X-Ray , Lyases/chemistry , Models, Molecular , Sulfur/chemistry
9.
Biomolecules ; 10(12)2020 12 16.
Article in English | MEDLINE | ID: mdl-33339190

ABSTRACT

S-adenosyl-l-homocysteine hydrolase (SAHase) is a major regulator of cellular methylation reactions that occur in eukaryotic and prokaryotic organisms. SAHase activity is also a significant source of l-homocysteine and adenosine, two compounds involved in numerous vital, as well as pathological processes. Therefore, apart from cellular methylation, the enzyme may also influence other processes important for the physiology of particular organisms. Herein, presented is the structural characterization and comparison of SAHases of eukaryotic and prokaryotic origin, with an emphasis on the two principal domains of SAHase subunit based on the Rossmann motif. The first domain is involved in the binding of a substrate, e.g., S-adenosyl-l-homocysteine or adenosine and the second domain binds the NAD+ cofactor. Despite their structural similarity, the molecular interactions between an adenosine-based ligand molecule and macromolecular environment are different in each domain. As a consequence, significant differences in the conformation of d-ribofuranose rings of nucleoside and nucleotide ligands, especially those attached to adenosine moiety, are observed. On the other hand, the chemical nature of adenine ring recognition, as well as an orientation of the adenine ring around the N-glycosidic bond are of high similarity for the ligands bound in the substrate- and cofactor-binding domains.


Subject(s)
Adenosylhomocysteinase/metabolism , Adenine/chemistry , Adenosine/chemistry , Amino Acid Motifs , Animals , Crystallography, X-Ray , Databases, Protein , Homocysteine/chemistry , Humans , Ligands , Methylation , Molecular Conformation , NAD , Nucleotides/chemistry , Protein Binding , Protein Domains , Protein Folding , Software
10.
Chemistry ; 26(36): 8035-8044, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32259333

ABSTRACT

Disabling the bacterial capacity to cause infection is an innovative approach that has attracted significant attention to fight against superbugs. A relevant target for anti-virulence drug discovery is the type I dehydroquinase (DHQ1) enzyme. It was shown that the 2-hydroxyethylammonium derivative 3 has in vitro activity since it causes the covalent modification of the catalytic lysine residue of DHQ1. As this compound does not bear reactive electrophilic centers, how the chemical modification occurs is intriguing. We report here an integrated approach, which involves biochemical studies, X-ray crystallography and computational studies on the reaction path using combined quantum mechanics/molecular mechanics Umbrella Sampling Molecular Dynamics, that evidences that DHQ1 catalyzes its self-immolation by transforming the unreactive 2-hydroxyethylammonium group in 3 into an epoxide that triggers the lysine covalent modification. This finding might open opportunities for the design of lysine-targeted irreversible inhibitors bearing a 2-hydroxyethylammonium moiety as an epoxide proform, which to our knowledge has not been reported previously.


Subject(s)
Bacteria/chemistry , Enzyme Inhibitors/chemistry , Epoxy Compounds/chemistry , Hydro-Lyases/chemistry , Bacteria/metabolism , Catalysis , Drug Discovery , Hydro-Lyases/metabolism , Lysine , Molecular Dynamics Simulation
11.
Molecules ; 22(4)2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28387738

ABSTRACT

Abstract: The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.


Subject(s)
Macromolecular Substances/chemistry , Models, Molecular , Neutrons , Crystallography, X-Ray , Enzymes/chemistry , Enzymes/metabolism , Humans , Hydrogen/chemistry , Hydrogen Bonding , Hydroxides/chemistry , Ligands , Molecular Conformation , Onium Compounds/chemistry , Oxidation-Reduction , Protein Binding , Proteins/chemistry , Proteins/metabolism , Solvents/chemistry , Substrate Specificity , Water/chemistry
12.
Methods Mol Biol ; 1401: 31-49, 2016.
Article in English | MEDLINE | ID: mdl-26831699

ABSTRACT

Polyketides are a structurally and functionally diverse family of bioactive natural products that have found widespread application as pharmaceuticals, agrochemicals, and veterinary medicines. In bacteria complex polyketides are biosynthesized by giant multifunctional megaenzymes, termed modular polyketide synthases (PKSs), which construct their products in a highly coordinated assembly line-like fashion from a pool of simple precursor substrates. Not only is the multifaceted enzymology of PKSs a fascinating target for study, but it also presents considerable opportunities for the reengineering of these systems affording access to functionally optimized unnatural natural products. Here we provide an introductory primer to modular polyketide synthase structure and function, and highlight recent advances in the characterization and exploitation of these systems.


Subject(s)
Bacteria/enzymology , Biological Products/metabolism , Polyketide Synthases/metabolism , Polyketides/metabolism , Bacteria/chemistry , Bacteria/genetics , Bacteria/metabolism , Biological Products/chemistry , Biosynthetic Pathways , Models, Molecular , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/chemistry , Protein Engineering/methods , Protein Structure, Tertiary
13.
J Biol Chem ; 291(10): 5234-46, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26637355

ABSTRACT

Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via ß-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent ß-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because ß-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic ß-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.


Subject(s)
Bacterial Proteins/chemistry , Catalytic Domain , Lignin/metabolism , Oxidoreductases/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conserved Sequence , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Binding , Proteobacteria/enzymology , Substrate Specificity
14.
Angew Chem Int Ed Engl ; 53(50): 13710-4, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25314114

ABSTRACT

Cofactor-free oxidases and oxygenases promote and control the reactivity of O2 with limited chemical tools at their disposal. Their mechanism of action is not completely understood and structural information is not available for any of the reaction intermediates. Near-atomic resolution crystallography supported by in crystallo Raman spectroscopy and QM/MM calculations showed unambiguously that the archetypical cofactor-free uricase catalyzes uric acid degradation via a C5(S)-(hydro)peroxide intermediate. Low X-ray doses break specifically the intermediate C5-OO(H) bond at 100 K, thus releasing O2 in situ, which is trapped above the substrate radical. The dose-dependent rate of bond rupture followed by combined crystallographic and Raman analysis indicates that ionizing radiation kick-starts both peroxide decomposition and its regeneration. Peroxidation can be explained by a mechanism in which the substrate radical recombines with superoxide transiently produced in the active site.


Subject(s)
Oxidoreductases/chemistry , Oxygen/chemistry , Peroxides/chemistry , Catalysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL