Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.862
Filter
1.
PLoS One ; 19(8): e0300270, 2024.
Article in English | MEDLINE | ID: mdl-39106270

ABSTRACT

Total hip arthroplasty (THA) is one of the most successful orthopaedic interventions globally, with over 450,000 procedures annually in the U.S. alone. However, issues like aseptic loosening, dislocation, infection and stress shielding persist, necessitating complex, costly revision surgeries. This highlights the need for continued biomaterials innovation to enhance primary implant integrity and longevity. Implant materials play a pivotal role in determining long-term outcomes, with titanium alloys being the prominent choice. However, emerging evidence indicates scope for optimized materials. The nickel-free ß titanium alloy Ti-27Nb shows promise with excellent biocompatibility and mechanical properties. Using finite element analysis (FEA), this study investigated the biomechanical performance and safety factors of a hip bone implant made of nickel-free titanium alloy (Ti-27Nb) under actual loading during routine day life activities for different body weights. The FEA modelled physiological loads during walking, jogging, stair ascent/descent, knee bend, standing up, sitting down and cycling for 75 kg and 100 kg body weights. Comparative analyses were conducted between untreated versus 816-hour simulated body fluid (SBF) treated implant conditions to determine in vivo degradation effects. The FEA predicted elevated von Mises stresses in the implant neck for all activities, especially stair climbing, due to its smaller cross-section. Stresses increased substantially with a higher 100 kg body weight compared to 75 kg, implying risks for heavier patients. Safety factors were reduced by up to 58% between body weights, although remaining above the desired minimum value of 1. Negligible variations were observed between untreated and SBF-treated responses, attributed to Ti-27Nb's excellent biocorrosion resistance. This comprehensive FEA provided clinically relevant insights into the biomechanical behaviour and integrity of the Ti-27Nb hip implant under complex loading scenarios. The results can guide shape and material optimization to improve robustness against repetitive stresses over long-term use. Identifying damage accumulation and failure risks is crucial for hip implants encountering real-world variable conditions. The negligible SBF effects validate Ti-27Nb's resistance to physiological degradation. Overall, the study significantly advances understanding of Ti-27Nb's suitability for reliable, durable hip arthroplasties with low revision rates.


Subject(s)
Alloys , Finite Element Analysis , Hip Prosthesis , Stress, Mechanical , Titanium , Hip Prosthesis/adverse effects , Humans , Alloys/chemistry , Arthroplasty, Replacement, Hip/adverse effects , Weight-Bearing , Niobium/chemistry , Biomechanical Phenomena , Materials Testing , Prosthesis Design
2.
Langmuir ; 40(32): 16791-16803, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39086155

ABSTRACT

Orthopedic and dental implants made from Ti6Al4V are widely used due to their excellent mechanical properties and biocompatibility. However, the long-term performance of these implants can be compromised by bacterial infections. This study explores the development of hierarchically textured surfaces with enhanced bactericidal properties to address such challenges. Hierarchical surface structures were developed by combining microscale features produced by a microsecond laser and superimposed submicron features produced using a femtosecond laser. Microscale patterns were produced by the pulsed laser surface melting process, whereas submicrometer laser-induced periodic surface structures were created on top of them by femtosecond laser processing. Escherichia coli bacterial cells were cultured on the textured surface. After 24 h, a staining analysis was performed using SYTO9 and PI dyes to investigate the samples with a confocal microscope for live dead assays. Results showed bacterial colony formation onto the microscale surface textures with live bacterial cells, whereas the hierarchical surface textures display segregated and physically damaged bacterial cell attachments on surfaces. The hierarchical surface textures showed ∼98% dead bacterial cells due to the combined effect of its multiscale surface features and oxide formation during the laser processing steps. The efficacy of hierarchical surface textures in enhancing the antibacterial behavior of Ti6Al4V implants is evident from the conducted research. Such laser-based surface treatments can find potential applications in different industrial sectors.


Subject(s)
Alloys , Anti-Bacterial Agents , Escherichia coli , Lasers , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Alloys/chemistry , Alloys/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
3.
ACS Biomater Sci Eng ; 10(8): 5300-5312, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39087496

ABSTRACT

The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na2O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (in vitro formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.


Subject(s)
Coated Materials, Biocompatible , Glass , Titanium , Glass/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Titanium/chemistry , Prostheses and Implants , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing , Surface Properties , Alloys/chemistry , Humans
4.
Sci Rep ; 14(1): 15339, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961115

ABSTRACT

Given the hierarchical nature of bone and bone interfaces, osseointegration, namely the formation of a direct bone-implant contact, is best evaluated using a multiscale approach. However, a trade-off exists between field of view and spatial resolution, making it challenging to image large volumes with high resolution. In this study, we combine established electron microscopy techniques to probe bone-implant interfaces at the microscale and nanoscale with plasma focused ion beam-scanning electron microscopy (PFIB-SEM) tomography to evaluate osseointegration at the mesoscale. This characterization workflow is demonstrated for bone response to an additively manufactured Ti-6Al-4V implant which combines engineered porosity to facilitate bone ingrowth and surface functionalization via genistein, a phytoestrogen, to counteract bone loss in osteoporosis. SEM demonstrated new bone formation at the implant site, including in the internal implant pores. At the nanoscale, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the gradual nature of the bone-implant interface. By leveraging mesoscale analysis with PFIB-SEM tomography that captures large volumes of bone-implant interface with nearly nanoscale resolution, the presence of mineral ellipsoids varying in size and orientation was revealed. In addition, a well-developed lacuno-canalicular network and mineralization fronts directed both towards the implant and away from it were highlighted.


Subject(s)
Genistein , Osseointegration , Titanium , Osseointegration/drug effects , Genistein/pharmacology , Genistein/chemistry , Titanium/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Bone-Implant Interface , Microscopy, Electron, Scanning , Prostheses and Implants , Porosity , Alloys/chemistry
5.
PLoS One ; 19(7): e0306613, 2024.
Article in English | MEDLINE | ID: mdl-38980854

ABSTRACT

Platinum and platinum-based alloys are used as the electrode material in cochlear implants because of the biocompatibility and the favorable electrochemical properties. Still, these implants can fail over time. The present study was conducted to shed light on the effects of microstructure on the electrochemical degradation of platinum. After three days of stimulation with a square wave signal, corrosive attack appeared on the platinum surface. The influence of mechanical deformation, in particular rolling, on the corrosion resistance of platinum was also prominent. The cyclic voltammetry showed a clear dependence on the electrolyte used, which was interpreted as an influence of the buffer in the artificial perilymph used. In addition, the polarization curves showed a shift with grain size that was not expected. This could be attributed to the defects present on the surface. These findings are crucial for the manufacture of cochlear implants to ensure their long-term functionality.


Subject(s)
Cochlear Implants , Platinum , Platinum/chemistry , Materials Testing , Corrosion , Humans , Alloys/chemistry , Surface Properties , Biocompatible Materials/chemistry
6.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998976

ABSTRACT

AgCu bimetallic· nanoparticles (NPs) represent a novel class of inorganic, broad-spectrum antimicrobial agents that offer enhanced antimicrobial effectiveness and reduced cytotoxicity compared to conventional Ag NP antibacterial materials. This study examines the antimicrobial performance and structural characteristics of AgCu nanoparticles (NPs) synthesized via two distinct chemical reduction processes using PVP-PVA as stabilizers. Despite identical chemical elements and sphere-like shapes in both synthesis methods, the resulting AgCu nanoparticles exhibited significant differences in size and antimicrobial properties. Notably, AgCu NPs with smaller average particle sizes demonstrated weaker antimicrobial activity, as assessed by the minimum inhibitory concentration (MIC) measurement, contrary to conventional expectations. However, larger average particle-sized AgCu NPs showed superior antimicrobial effectiveness. High-resolution transmission electron microscopy analysis revealed that nearly all larger particle-sized nanoparticles were AgCu nanoalloys. In contrast, the smaller particle-sized samples consisted of both AgCu alloys and monometallic Ag and Cu NPs. The fraction of Ag ions (relative to the total silver amount) in the larger AgCu NPs was found to be around 9%, compared to only 5% in that of the smaller AgCu NPs. This indicates that the AgCu alloy content significantly contributes to enhanced antibacterial efficacy, as a higher AgCu content results in the increased release of Ag ions. These findings suggest that the enhanced antimicrobial efficacy of AgCu NPs is primarily attributed to their chemical composition and phase structures, rather than the size of the nanoparticles.


Subject(s)
Alloys , Copper , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Silver , Copper/chemistry , Metal Nanoparticles/chemistry , Alloys/chemistry , Alloys/pharmacology , Silver/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
7.
J Mech Behav Biomed Mater ; 157: 106650, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018917

ABSTRACT

The assessment of stent fatigue in Transcatheter Aortic Valve Replacement (TAVR) systems is critical for the design of next-generation devices, both in vitro and in vivo. The mechanical properties of the bioprosthetic heart valves (BHVs) have a significant impact on the fatigue life of the metallic stent and thus must be taken into consideration when evaluating new TAVR device designs. This study aims to investigate the relationship between BHV anisotropic behaviour and the asymmetric deflections of the stent frame observed during in vitro testing. An explicit dynamics finite element model of the nitinol stent with attached bioprosthetic valve leaflets was developed to evaluate the deflections of the TAVR device under haemodynamic loading. Our results demonstrate that pericardium behaviour plays a dominant role in determining stent frame deflection. The anisotropic behaviour of the leaflets, resulting from collagen fibre orientation, affects the extent of deflection encountered by each commissure of the frame. This leads to asymmetric variation in frame deflection that can influence the overall fatigue life of the nitinol stent. This study highlights the importance of considering both the flexible nature of the metallic stent as well as the leaflet anisotropic behaviour in the design and fatigue assessment of TAVR systems.


Subject(s)
Bioprosthesis , Stents , Transcatheter Aortic Valve Replacement , Transcatheter Aortic Valve Replacement/instrumentation , Anisotropy , Finite Element Analysis , Heart Valve Prosthesis , Alloys/chemistry , Materials Testing , Mechanical Phenomena , Prosthesis Design , Aortic Valve/surgery
8.
J Nanobiotechnology ; 22(1): 422, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014416

ABSTRACT

Vascularization plays a significant role in promoting the expedited process of bone regeneration while also enhancing the stability and viability of artificial bone implants. Although titanium alloy scaffolds were designed to mimic the porous structure of human bone tissues to facilitate vascularization in bone repair, their biological inertness restricted their broader utilization. The unique attribute of Metal-organic framework (MOF) MIL-53(Fe), known as "breathing", can facilitate the efficient adsorption of extracellular matrix proteins and thus provide the possibility for efficient interaction between scaffolds and cell adhesion molecules, which helps improve the bioactivity of the titanium alloy scaffolds. In this study, MIL-53(Fe) was synthesized in situ on the scaffold after hydrothermal treatment. The MIL-53(Fe) endowed the scaffold with superior protein absorption ability and preferable biocompatibility. The scaffolds have been shown to possess favorable osteogenesis and angiogenesis inducibility. It was indicated that MIL-53(Fe) modulated the mechanotransduction process of endothelial cells and induced increased cell stiffness by promoting the adsorption of adhesion-mediating extracellular matrix proteins to the scaffold, such as laminin, fibronectin, and perlecan et al., which contributed to the activation of the endothelial tip cell phenotype at sprouting angiogenesis. Therefore, this study effectively leveraged the intrinsic "breathing" properties of MIL-53 (Fe) to enhance the interaction between titanium alloy scaffolds and vascular endothelial cells, thereby facilitating the vascularization inducibility of the scaffold, particularly during the sprouting angiogenesis phase. This study indicates that MIL-53(Fe) coating represents a promising strategy to facilitate accelerated and sufficient vascularization and uncovers the scaffold-vessel interaction from a biomechanical perspective.


Subject(s)
Neovascularization, Physiologic , Tissue Scaffolds , Titanium , Titanium/chemistry , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Endothelial Cells/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Osteogenesis/drug effects , Alloys/chemistry , Human Umbilical Vein Endothelial Cells , Prostheses and Implants , Mechanotransduction, Cellular , Cell Adhesion/drug effects , Tissue Engineering/methods
9.
Chem Commun (Camb) ; 60(60): 7729-7732, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38973292

ABSTRACT

Implant infections are a major challenge for the healthcare system. Biofilm formation and increasing antibiotic resistance of common bacteria cause implant infections, leading to an urgent need for alternative antibacterial agents. In this study, the antibiofilm behaviour of a coating consisting of a silver (Ag)/gold (Au) nanoalloy is investigated. This alloy is crucial to reduce uncontrolled potentially toxic Ag+ ion release. In neutral pH environments this release is minimal, but the Ag+ ion release increases in acidic microenvironments caused by bacterial biofilms. We perform a detailed physicochemical characterization of the nanoalloys and compare their Ag+ ion release with that of pure Ag nanoparticles. Despite a lower released Ag+ ion concentration at pH 7.4, the antibiofilm activity against Escherichia coli (a bacterium known to produce acidic pH environments) is comparable to a pure nanosilver sample with a similar Ag-content. Finally, biocompatibility studies with mouse pre-osteoblasts reveal a decreased cytotoxicity for the alloy coatings and nanoparticles.


Subject(s)
Alloys , Anti-Bacterial Agents , Biofilms , Escherichia coli , Gold , Metal Nanoparticles , Silver , Silver/chemistry , Silver/pharmacology , Biofilms/drug effects , Gold/chemistry , Gold/pharmacology , Hydrogen-Ion Concentration , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Alloys/chemistry , Alloys/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Ions/chemistry , Ions/pharmacology , Prostheses and Implants , Cell Survival/drug effects
10.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Article in English | MEDLINE | ID: mdl-38952675

ABSTRACT

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice , Staphylococcus aureus/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Cell Differentiation/drug effects , Prostheses and Implants , Alloys/pharmacology , Alloys/chemistry , Rats , Titanium/chemistry , Titanium/pharmacology , Silver/chemistry , Silver/pharmacology , Cell Proliferation/drug effects , Copper/chemistry , Copper/pharmacology , Male , X-Ray Microtomography , Cell Line , Metal Nanoparticles/chemistry
11.
PLoS One ; 19(7): e0305744, 2024.
Article in English | MEDLINE | ID: mdl-39074090

ABSTRACT

Using a cutting-edge net-shape manufacturing technique called Additive Layer Manufacturing (ALM), highly complex components that are not achievable with conventional wrought and cast methods can be produced. As a result, the aerospace sector is paying closer attention to using this technology to fabricate superalloys based on nickel to develop the holistic gas turbine. Because of this, there is an increasing need for the mechanical characterisation of such material. Conventional mechanical testing is hampered by the limited availability of material that has been processed, especially given the large number of process factors that need to be assessed. Thus, the present study focuses on manufacturing CM247LC Ni-based superalloy with exceptional mechanical characteristics by laser powder bed fusion (L-PBF). This study evaluates the effect of input process variables such as laser power, scan speed, hatch distance and volumetric energy density on the mechanical performance of the LPBF CM247LC superalloy. The maximum value of as-built tensile strength obtained in the study is 997.81 MPa. Plotting Pearson's heatmap and the Feature importance (F-test) was used in the data analysis to examine the impact of input parameters on tensile strength. The accuracy of the tensile strength data classification by machine learning algorithms, such as k-nearest neighbours, Naïve Baiyes, Support vector machine, XGBoost, AdaBoost, Decision tree, Random forest, and logistic regression algorithms, was 92.5%, 83.75%, 83%, 85%, 87.5%, 90%, 91.25%, and 77.5%, respectively.


Subject(s)
Alloys , Machine Learning , Tensile Strength , Alloys/chemistry , Materials Testing/methods , Nickel/chemistry , Algorithms
12.
Anal Chim Acta ; 1317: 342919, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030015

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread disease transmission, challenging the stability of global healthcare systems. Surface-enhanced Raman scattering (SERS) as an easy operation, fast, and low-cost technology illustrates a good potential in detecting SARS-CoV-2. In the study, one-step fabrication of gold-silver alloy nanoparticles (AuAgNPs) with adjustable metal proportions and diameters is employed as SERS substrates. The angiotensin-converting enzyme 2 (ACE2) functionalized AuAgNPs are applied as sensor surfaces to detect SARS-CoV-2 S protein. By optimizing the SERS substrates, ACE2/Au35Ag65NPs illustrate higher performance in detecting the SARS-CoV-2 S protein with a limit of detection (LOD) of 10 fg/mL in both phosphate-buffered saline (PBS) and pharyngeal swabs solution (PSS). It also provides excellent reproducibility with a relative standard deviation (RSD) of 7.7 % and 7.9 %, respectively. This easily preparable and highly reproducible SERS substrate has good potential in the practical application of detecting SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Gold , Limit of Detection , Metal Nanoparticles , SARS-CoV-2 , Silver , Spectrum Analysis, Raman , Spike Glycoprotein, Coronavirus , Spectrum Analysis, Raman/methods , Silver/chemistry , Spike Glycoprotein, Coronavirus/analysis , Metal Nanoparticles/chemistry , SARS-CoV-2/isolation & purification , Humans , Gold/chemistry , COVID-19/diagnosis , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Alloys/chemistry
13.
J Biomed Mater Res B Appl Biomater ; 112(8): e35452, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39042645

ABSTRACT

In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.


Subject(s)
Absorbable Implants , Materials Testing , Stents , X-Ray Microtomography , Zinc , Zinc/chemistry , Alloys/chemistry , Iron/chemistry , Corrosion
14.
ACS Biomater Sci Eng ; 10(8): 4927-4937, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38967561

ABSTRACT

Nickel-titanium alloy stents are widely used in the interventional treatment of various malignant tumors, and it is important to develop nickel-titanium alloy stents with selective cancer-inhibiting and antibacterial functions to avoid malignant obstruction caused by tumor invasion and bacterial colonization. In this work, an acid-responsive layered double hydroxide (LDH) film was constructed on the surface of a nickel-titanium alloy by hydrothermal treatment. The release of nickel ions from the film in the acidic tumor microenvironment induces an intracellular oxidative stress response that leads to cell death. In addition, the specific surface area of LDH nanosheets could be further regulated by heat treatment to modulate the release of nickel ions in the acidic microenvironment, allowing the antitumor effect to be further enhanced. This acid-responsive LDH film also shows a good antibacterial effect against S. aureus and E. coli. Besides, the LDH film prepared without the introduction of additional elements maintains low toxicity to normal cells in a normal physiological environment. This work offers some guidance for the design of a practical nickel-titanium alloy stent for the interventional treatment of tumors.


Subject(s)
Anti-Bacterial Agents , Hydroxides , Nickel , Tumor Microenvironment , Hydroxides/chemistry , Hydroxides/pharmacology , Tumor Microenvironment/drug effects , Nickel/chemistry , Nickel/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alloys/chemistry , Alloys/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Titanium/chemistry , Titanium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydrogen-Ion Concentration
15.
ACS Biomater Sci Eng ; 10(8): 5381-5389, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39041183

ABSTRACT

In this research, we investigate the impact of varying machining parameters [depth of cutting (mm) and spindle rotation speed (rpm)] on the microstructure and electrochemical behavior of Ti6Al4V-ELI dental implants. This comprehensive study employs an approach, leveraging potentiodynamic methods and electrochemical impedance spectroscopy, to analyze corrosion behavior in a phosphate-buffered saline solution. To further deepen our understanding of corrosion kinetics, we used an alternating current circuit model, based on a simple Randles equivalent circuit. This model elucidates the corrosion interface interactions of the Ti6Al4-V-ELI alloy implant within the PBS solution. In addition, our research delves into the microstructural implications of different machining parameters, utilizing scanning electron microscopy and X-ray diffraction (XRD) techniques to reveal significant phase changes. The changes in texture were examined qualitatively by comparing the intensities of the peaks of the XRD pattern. A detailed correlation analysis further links the machining parameters with the corrosion properties of dental implants, offering a comprehensive perspective rarely explored in the existing literature. The results obtained for the three samples showed that the corrosion resistance would be higher by increasing the machining depth and the spindle rotation and that the corrosion current would be lower. As a result, a lower corrosion rate was obtained. Finally, experimental results from electrochemical analyses are compared and discussed.


Subject(s)
Alloys , Dental Implants , Titanium , Corrosion , Titanium/chemistry , Alloys/chemistry , Materials Testing , X-Ray Diffraction , Microscopy, Electron, Scanning , Dielectric Spectroscopy , Dental Prosthesis Design , Surface Properties
16.
Sci Rep ; 14(1): 16847, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039225

ABSTRACT

To investigate the wear and corrosion of titanium alloy spinal implants in vivo, we evaluated removed implants and their surrounding scar tissues from 27 patients between May 2019 and April 2021. We performed scanning electron microscopy, energy-dispersive X-ray spectroscopy, and histological analysis. The results revealed metal-like particles in the soft tissues of seven patients, without any considerable increase in inflammatory cell infiltration. Patients with fractures showed lower percentages of wear and corrosion compared with other patients (42% and 17% vs. 59% and 26%). Polyaxial screws exhibited higher wear and corrosion percentages (53% and 23%) compared with uniaxial screws (39% and 3%), although in patients with fracture, the reverse was observed (20% and 0% vs. 39% and 3%). We found that titanium alloy spinal implants experience some degree of wear and corrosion in vivo. The titanium alloy particles formed by wear exhibited good histocompatibility, not causing inflammation, foreign body reactions, or osteolysis. Therefore, spinal implants should be removed cautiously when treating titanium alloy spinal metallosis. The wear and corrosion of the implants increase with the increase in implantation time, although the screw structure does not significantly affect these changes.


Subject(s)
Alloys , Titanium , Titanium/chemistry , Titanium/adverse effects , Corrosion , Alloys/chemistry , Middle Aged , Male , Humans , Female , Aged , Adult , Microscopy, Electron, Scanning , Bone Screws/adverse effects , Prostheses and Implants/adverse effects , Materials Testing
17.
Sci Rep ; 14(1): 16110, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997318

ABSTRACT

An implantable electrode based on bioresorbable Mg-Nd-Zn-Zr alloy was developed for next-generation radiofrequency (RF) tissue welding application, aiming to reduce thermal damage and enhance anastomotic strength. The Mg alloy electrode was designed with different structural features of cylindrical surface (CS) and continuous long ring (LR) in the welding area, and the electrothermal simulations were studied by finite element analysis (FEA). Meanwhile, the temperature variation during tissue welding was monitored and the anastomotic strength of welded tissue was assessed by measuring the avulsion force and burst pressure. FEA results showed that the mean temperature in the welding area and the proportion of necrotic tissue were significantly reduced when applying an alternating current of 110 V for 10 s to the LR electrode. In the experiment of tissue welding ex vivo, the maximum and mean temperatures of tissues welded by the LR electrode were also significantly reduced and the anastomotic strength of welded tissue could be obviously improved. Overall, an ideal welding temperature and anastomotic strength which meet the clinical requirement can be obtained after applying the LR electrode, suggesting that Mg-Nd-Zn-Zr alloy with optimal structure design shows great potential to develop implantable electrode for next-generation RF tissue welding application.


Subject(s)
Absorbable Implants , Alloys , Electrodes, Implanted , Magnesium , Alloys/chemistry , Magnesium/chemistry , Welding/methods , Finite Element Analysis , Animals , Temperature , Radio Waves , Equipment Design
18.
Langmuir ; 40(28): 14674-14684, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958429

ABSTRACT

Magnesium-based biodegradable metal bone implants exhibit superior mechanical properties compared to biodegradable polymers for orthopedic and cardiovascular stents. In this study, MgZZC-x (x = 1, 1.2) alloys were screened by in vitro biocompatibility tests in three simulated body fluids under nontoxic conditions. The MgZZC-1 alloys with better biocompatibility were selected to predict the days required for complete degradation. The evolution of degradation products was analyzed, and the mechanism of formation of the product film was inferred. A degradation kinetic model was established to investigate the effect of MEM components on the degradation of the alloys. The results demonstrate that the proteins in MEM can greatly retard the degradation progress by attaching to the surface of MgZZC-1 alloys, which are predicted to degrade completely within 341 days. The carbonate and phosphate buffers were adjusted to pH in MEM solution, delaying the degradation of magnesium alloys. This process in MEM more accurately reflects the actual degradation in the body and is superior to that in Hanks and SBF solutions. This study will promote the application of biodegradable materials in clinical medicine.


Subject(s)
Alloys , Biocompatible Materials , Body Fluids , Magnesium , Alloys/chemistry , Body Fluids/chemistry , Magnesium/chemistry , Biocompatible Materials/chemistry , Hydrogen-Ion Concentration , Kinetics , Humans
19.
ACS Biomater Sci Eng ; 10(8): 4901-4915, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39072479

ABSTRACT

Titanium plates are the current gold standard for fracture fixation of the mandible. Magnesium alloys such as WE43 are suitable biodegradable alternatives due to their high biocompatibility and elasticity modulus close to those of cortical bone. By surface modification, the reagibility of magnesium and thus hydrogen gas accumulation per time are further reduced, bringing plate fixation with magnesium closer to clinical application. This study aimed to compare bone healing in a monocortical mandibular fracture model in sheep with a human-standard size, magnesium-based, plasma electrolytic-oxidation (PEO) surface modified miniplate fixation system following 4 and 12 weeks. Bone healing was analyzed using micro-computed tomography and histological analysis with Movat's pentachrome and Giemsa staining. For evaluation of the tissue's osteogenic activity, polychrome fluorescent labeling was performed, and vascularization was analyzed using immunohistochemical staining for alpha-smooth muscle actin. Bone density and bone mineralization did not differ significantly between titanium and magnesium (BV/TV: T1: 8.74 ± 2.30%, M1: 6.83 ± 2.89%, p = 0.589 and T2: 71.99 ± 3.13%, M2: 68.58 ± 3.74%, p = 0.394; MinB: T1: 26.16 ± 9.21%, M1: 22.15 ± 7.99%, p = 0.818 and T2: 77.56 ± 3.61%, M2: 79.06 ± 4.46%, p = 0.699). After 12 weeks, minor differences were observed regarding bone microstructure, osteogenic activity, and vascularization. There was significance with regard to bone microstructure (TrTh: T2: 0.08 ± 0.01 mm, M2: 0.06 ± 0.01 mm; p = 0.041). Nevertheless, these differences did not interfere with bone healing. In this study, adequate bone healing was observed in both groups. Only after 12 weeks were some differences detected with larger trabecular spacing and more vessel density in magnesium vs titanium plates. However, a longer observational time with full resorption of the implants should be targeted in future investigations.


Subject(s)
Bone Plates , Magnesium , Mandible , Titanium , Animals , Magnesium/pharmacology , Titanium/chemistry , Titanium/pharmacology , Sheep , Mandible/surgery , Mandible/diagnostic imaging , Fracture Healing/drug effects , Surface Properties , Osteogenesis/drug effects , Mandibular Fractures/surgery , Mandibular Fractures/diagnostic imaging , X-Ray Microtomography , Alloys/chemistry
20.
Biomater Adv ; 163: 213960, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39029207

ABSTRACT

Although magnesium alloy has received tremendous attention in biodegradable cardiovascular stents, the poor in vivo corrosion resistance and limited endothelialization are still the bottlenecks for its application in cardiovascular stents. Fabrication of the multifunctional bioactive coating with excellent anti-corrosion on the surface is beneficial for rapid re-endothelialization and the normal physiological function recovery of blood vessels. In the present study, a bioactive hydrogel coating was established on the surface of magnesium alloy by copolymerization of sulfobetaine methacrylate (SBMA) and acrylamide (AM) via ultraviolet (UV) polymerization, followed by the immobilization of fucoidan (Fu). The results showed that the as-prepared multifunctional hydrogel coating could enhance the corrosion resistance and the surface wettability of the magnesium alloy surface, endowing it with the ability of selective albumin adsorption; meanwhile, it could augment biocompatibility. The following introduction of fucoidan on the surface could further improve the hemocompatibility characterized by reducing protein adsorption, minimizing hemolysis, and preventing platelet aggregation and activation. Additionally, the immobilized fucoidan promoted endothelial cell (EC) growth, as well as up-regulated the expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO) in endothelial cells (ECs). Consequently, this research paves a novel approach to developing a versatile bioactive coating for magnesium alloy surfaces and lays a foundation in cardiovascular biomaterials.


Subject(s)
Alloys , Coated Materials, Biocompatible , Hydrogels , Magnesium , Polysaccharides , Stents , Polysaccharides/pharmacology , Polysaccharides/chemistry , Magnesium/chemistry , Magnesium/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Corrosion , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Materials Testing , Endothelial Cells/drug effects , Vascular Endothelial Growth Factor A/metabolism , Surface Properties , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL