Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 483
Filter
1.
Nature ; 630(8018): 935-942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867049

ABSTRACT

Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.


Subject(s)
Hippocampus , Sleep Deprivation , Sleep, Slow-Wave , Animals , Female , Male , Rats , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/physiopathology , Maze Learning/physiology , Memory/physiology , Pyramidal Cells/physiology , Rats, Long-Evans , Sleep Deprivation/physiopathology , Sleep, Slow-Wave/physiology , Wakefulness/physiology , Time Factors , Hippocampus/cytology , Hippocampus/physiology , Hippocampus/physiopathology
2.
Mol Autism ; 15(1): 28, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877552

ABSTRACT

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Subject(s)
Disease Models, Animal , Long-Term Potentiation , Protein Serine-Threonine Kinases , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Spasms, Infantile , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Epileptic Syndromes/genetics , Epileptic Syndromes/metabolism , Excitatory Postsynaptic Potentials , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/physiopathology , Hippocampus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synapses/metabolism
3.
Transl Psychiatry ; 14(1): 256, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876996

ABSTRACT

Impaired behavioural flexibility is a core feature of neuropsychiatric disorders and is associated with underlying dysfunction of fronto-striatal circuitry. Reduced dosage of Cyfip1 is a risk factor for neuropsychiatric disorder, as evidenced by its involvement in the 15q11.2 (BP1-BP2) copy number variant: deletion carriers are haploinsufficient for CYFIP1 and exhibit a two- to four-fold increased risk of schizophrenia, autism and/or intellectual disability. Here, we model the contributions of Cyfip1 to behavioural flexibility and related fronto-striatal neural network function using a recently developed haploinsufficient, heterozygous knockout rat line. Using multi-site local field potential (LFP) recordings during resting state, we show that Cyfip1 heterozygous rats (Cyfip1+/-) harbor disrupted network activity spanning medial prefrontal cortex, hippocampal CA1 and ventral striatum. In particular, Cyfip1+/- rats showed reduced influence of nucleus accumbens and increased dominance of prefrontal and hippocampal inputs, compared to wildtype controls. Adult Cyfip1+/- rats were able to learn a single cue-response association, yet unable to learn a conditional discrimination task that engages fronto-striatal interactions during flexible pairing of different levers and cue combinations. Together, these results implicate Cyfip1 in development or maintenance of cortico-limbic-striatal network integrity, further supporting the hypothesis that alterations in this circuitry contribute to behavioural inflexibility observed in neuropsychiatric diseases including schizophrenia and autism.


Subject(s)
Adaptor Proteins, Signal Transducing , Haploinsufficiency , Prefrontal Cortex , Schizophrenia , Animals , Rats , Schizophrenia/genetics , Schizophrenia/physiopathology , Male , Adaptor Proteins, Signal Transducing/genetics , Prefrontal Cortex/physiopathology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , CA1 Region, Hippocampal/physiopathology , Disease Models, Animal , Nerve Net/physiopathology , Behavior, Animal/physiology , Corpus Striatum/physiopathology , Ventral Striatum/physiopathology
4.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R35-R45, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708544

ABSTRACT

Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress, yet the impact of inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy is unclear. We hypothesized that healthy pregnancy transiently reduces learning and memory and these deficits are associated with pregnancy-induced elevations in inflammation and oxidative stress. Cognitive performance was tested with novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [nonpregnant (nulliparous), pregnant (near term), and 1-2 mo after pregnancy (primiparous); n = 7 or 8/group]. Plasma and CA1 proinflammatory cytokines were measured with a MILLIPLEX magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via Western blot analysis. Our results demonstrate that CA1 oxidative stress-associated markers were elevated in pregnant compared with nulliparous rats (P ≤ 0.017) but there were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired (P ≤ 0.007) whereas anxiety-like behavior (P ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest that maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.NEW & NOTEWORTHY Healthy pregnancy is associated with elevated maternal systemic and brain oxidative stress. During postpregnancy, brain oxidative stress remains elevated whereas systemic oxidative stress is resolved. This sustained maternal brain oxidative stress is associated with learning impairments and decreased anxiety-like behavior during the postpregnancy period.


Subject(s)
Oxidative Stress , Rats, Sprague-Dawley , Animals , Female , Pregnancy , Rats , Inflammation/metabolism , Inflammation/physiopathology , Memory , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , Spatial Memory , Cytokines/metabolism , Cytokines/blood , Anxiety/metabolism , Neurons/metabolism , Maze Learning , Inflammation Mediators/metabolism , Inflammation Mediators/blood
5.
PLoS Comput Biol ; 20(5): e1012085, 2024 May.
Article in English | MEDLINE | ID: mdl-38709845

ABSTRACT

Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aß), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aß exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aß pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aß exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aß pathology causes in those circuits.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , CA1 Region, Hippocampal , Animals , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , CA1 Region, Hippocampal/pathology , Computational Biology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Presenilin-1/genetics , Presenilin-1/metabolism
6.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608544

ABSTRACT

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Subject(s)
CA1 Region, Hippocampal , Delta Rhythm , Postoperative Cognitive Complications , Sleep Deprivation , Theta Rhythm , Animals , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Mice , Theta Rhythm/physiology , Male , Delta Rhythm/physiology , CA1 Region, Hippocampal/physiopathology , Mice, Inbred C57BL , Electroencephalography/methods , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Sleep/physiology , Aging/physiology
7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835243

ABSTRACT

Chronic stress is a core risk factor for developing a myriad of neurological disorders, including major depression. The chronicity of such stress can lead to adaptive responses or, on the contrary, to psychological maladaptation. The hippocampus is one of the most affected brain regions displaying functional changes in chronic stress. Egr1, a transcription factor involved in synaptic plasticity, is a key molecule regulating hippocampal function, but its role in stress-induced sequels has been poorly addressed. Emotional and cognitive symptoms were induced in mice by using the chronic unpredictable mild stress (CUMS) protocol. We used inducible double-mutant Egr1-CreERT2 x R26RCE mice to map the formation of Egr1-dependent activated cells. Results show that short- (2 days) or long-term (28 days) stress protocols in mice induce activation or deactivation, respectively, of hippocampal CA1 neural ensembles in an Egr1-activity-dependent fashion, together with an associated dendritic spine pathology. In-depth characterization of these neural ensembles revealed a deep-to-superficial switch in terms of Egr1-dependent activation of CA1 pyramidal neurons. To specifically manipulate deep and superficial pyramidal neurons of the hippocampus, we then used Chrna7-Cre (to express Cre in deep neurons) and Calb1-Cre mice (to express Cre in superficial neurons). We found that specific manipulation of superficial but not deep pyramidal neurons of the CA1 resulted in the amelioration of depressive-like behaviors and the restoration of cognitive impairments induced by chronic stress. In summary, Egr1 might be a core molecule driving the activation/deactivation of hippocampal neuronal subpopulations underlying stress-induced alterations involving emotional and cognitive sequels.


Subject(s)
CA1 Region, Hippocampal , Cognition , Early Growth Response Protein 1 , Emotions , Pyramidal Cells , Stress, Psychological , Animals , Mice , Early Growth Response Protein 1/metabolism , Neuronal Plasticity/physiology , Neurons , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Chronic Disease , CA1 Region, Hippocampal/physiopathology
8.
J Neurophysiol ; 128(6): 1566-1577, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36382903

ABSTRACT

Burst discharges in the immature brain may contribute to its enhanced seizure susceptibility. The cellular mechanisms underlying burst discharges in the CA1 area of the immature versus adult hippocampus were investigated with simultaneous whole-cell and field-potential recordings. When GABAA receptors were blocked pharmacologically, bursts in CA1 were either graded or all-or-none (or mixed) as a function of electrical stimulation intensity. Most CA1 minislices from immature rats displayed all-or-none or mixed bursts, whereas the slices from adult rats predominantly elicited graded bursts. The frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were greater in CA1 pyramidal cells from the immature than the adult slices. The developmental differences in CA1 bursting were also detected in slices adjusted for maturational changes in brain volume (i.e., 350 µm thick for immature vs. 450 µm thick for adult rats). Neither N-methyl-d-aspartate (NMDA) nor group I metabotropic glutamate (mGlu1) receptor antagonists blocked the network-driven bursts in immature CA1, but an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker abolished them. Robust excitatory postsynaptic potentials (EPSPs) occurred after bursts in some immature CA1 slices (23%) but never in slices from the adult. The input-output (amount of current injected vs. number of action potentials generated) relationship was markedly greater in CA1 pyramidal cells in the immature compared with the adult hippocampus. These data suggest that the CA1 area of the immature brain is capable of generating network-driven bursts, which declines in adult rats. The increased propensity of burst generation in immature CA1 appears to involve a greater AMPA receptor-mediated synaptic network and an increased intrinsic spike-generating ability.NEW & NOTEWORTHY Burst discharges in the developing brain can provide valuable insights into epileptogenesis. We show that the immature hippocampal CA1 area is capable of generating all-or-none (i.e., network) bursts, which transitions to graded (i.e., nonnetwork) bursts in the mature brain via both synaptic and intrinsic mechanisms. Our results provide new clues to help understand possible mechanisms that may be shared in the immature and epileptic brain and how the normal brain becomes seizure prone (i.e., epileptogenesis).


Subject(s)
CA1 Region, Hippocampal , Seizures , Animals , Rats , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/physiopathology , Excitatory Postsynaptic Potentials , Pyramidal Cells , Age Factors
9.
Neuroscience ; 490: 11-24, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35248584

ABSTRACT

The impacts of early-life adversity (ELA) on cognitive functions including striatal-dependent habit memory and hippocampal-dependent spatial memory were investigated in male mice. The ELA mouse model was generated via an altered cage environment with limited nesting and bedding materials during postnatal days 2-9 (P2-9). The altered cage environment affected the nesting behaviors of dams, creating a stressful condition for their offspring. The ELA mice had biased decision making and poor spatial memory when they grew into young adults (4-month-old). To explore the underlying synaptic basis of these effects, excitatory synapses represented by postsynaptic density protein-95 (PSD-95) were immunolabelled on a series of brain sections and stereologically quantified in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), as well as in area CA1 of the dorsal hippocampus. Increased PSD-95-immunoreactive synapses were observed in DLS but not DMS, whereas selective loss of PSD-95 synapses was detected in the stratum radiatum of area CA1. The spine data supported the selective effects of ELA on PSD-95 synapses. Specifically, both thin and mushroom-type spines were increased in DLS, while loss of thin spines was apparent in CA1 radiatum in ELA mice versus controls. The correlation between PSD-95 synapses and memory performances was further analyzed, and the data suggested that increased small (<0.20 µm3) and large (>0.40 µm3) synapses in DLS might drive ELA mice to make decisions largely relying on habit memory, while loss of small synapses in hippocampal CA1 damage the spatial memory of ELA mice.


Subject(s)
CA1 Region, Hippocampal , Dendritic Spines , Memory , Stress, Psychological , Aging/psychology , Animals , CA1 Region, Hippocampal/physiopathology , Disks Large Homolog 4 Protein , Male , Mice , Synapses
10.
Exp Neurol ; 350: 113969, 2022 04.
Article in English | MEDLINE | ID: mdl-34973962

ABSTRACT

Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid ß deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.


Subject(s)
Alzheimer Disease/physiopathology , CA1 Region, Hippocampal/physiopathology , Electrophysiological Phenomena , Pyramidal Cells , Action Potentials , Aging , Animals , Dopamine Agents/pharmacology , Dopaminergic Neurons , Female , Levodopa/pharmacology , Male , Mice , Mice, Transgenic , Potassium Channels , Sodium Channels , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/physiopathology
11.
J Stroke Cerebrovasc Dis ; 31(3): 106241, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34983004

ABSTRACT

OBJECTIVES: Global cerebral ischemia (CI) causes severe neuronal injury, mainly in the hippocampal CA1 region. This study aimed to investigate an immediate using transcranial direct current stimulation (tDCS) in reducing neuronal injury induced by CI. MATERIALS AND METHODS: The 32 Wistar male rats were randomly divided into four groups (n=8 per group). In the ischemia group (I), CI was induced via the 4-vessel occlusion model. In the sham group (Sh), rats did not receive any intervention. In the ischemia+cathodal group (I+c/tDCS), the cathodal current was applied during CI. In the ischemia+anodal group (I+a/tDCS), the anodal current was applied. The current intensity of 400 µA was applied for 15-min during the ischemia. Hippocampal tissue was used to assess levels of NMDAR, IL-1ß, TNF-α, MDA, SOD, NOS, and apoptosis markers. Histological assessment and TUNEL staining were performed in CA1 hippocampal region. RESULTS: The c/tDCS significantly decreased the levels of IL-1ß and TNF-α than the I and a/tDCS groups. The c/tDCS significantly reduced MDA and NOS levels, while increasing the level of SOD than the I and a/tDCS. The c/tDCS caused a significant decrease in NMDAR level than the a/tDCS. Using c/tDCS significantly reduced the Bax and Caspase-3 expressions, while increasing the Bcl-2 expression than the I group. In the c/tDCS group, DNA fragmentation and neuronal death were significantly lower than the I and a/tDCS groups. CONCLUSION: Using cathodal a direct current could attenuate primary pathophysiological pathways induced by CI, and it eventually reduced neurons death and apoptosis in the CA1 hippocampal region.


Subject(s)
Brain Ischemia , CA1 Region, Hippocampal , Transcranial Direct Current Stimulation , Animals , Brain Ischemia/physiopathology , Brain Ischemia/prevention & control , CA1 Region, Hippocampal/physiopathology , Male , Neuroprotection , Rats , Rats, Wistar , Treatment Outcome
12.
Cell Rep ; 37(10): 110094, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879272

ABSTRACT

Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.


Subject(s)
Behavior, Animal , CA1 Region, Hippocampal/metabolism , Cognition , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukin-17/metabolism , Neuronal Plasticity , Receptors, Interleukin-17/metabolism , Synapses/metabolism , Animals , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Encephalomyelitis, Autoimmune, Experimental/psychology , Interleukin-17/genetics , Long-Term Potentiation , Male , Mice, Biozzi , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/genetics , Signal Transduction , Spatial Learning , Synapses/pathology , p38 Mitogen-Activated Protein Kinases
13.
Stem Cell Reports ; 16(12): 3005-3019, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34861165

ABSTRACT

New neurons are abnormal in the adult hippocampus of Alzheimer's disease (AD) mouse models. The effects of modulating adult neurogenesis on AD pathogenesis differ from study to study. We reported recently that ablation of adult neural stem cells (aNSCs) was associated with improved memory in AD models. Here, we found that long-term potentiation (LTP) was improved in the hippocampus of APP/PS1 mice after ablation of aNSCs. This effect was confirmed in hAPP-J20 mice, a second AD mouse model. On the other hand, we found that exposure to enriched environment (EE) dramatically increased the number of DCX+ neurons, promoted dendritic growth, and affected the location of newborn neurons in the dentate gyrus of APP/PS1 mice, and EE exposure significantly ameliorated memory deficits in APP/PS1 mice. Together, our data suggest that both inhibiting abnormal adult neurogenesis and enhancing healthy adult neurogenesis could be beneficial for AD, and they are not mutually exclusive.


Subject(s)
Aging/pathology , Alzheimer Disease/physiopathology , Cognition/physiology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Amyloid beta-Protein Precursor/metabolism , Animals , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Dentate Gyrus/metabolism , Disease Models, Animal , Gene Deletion , Humans , Long-Term Potentiation , Mice, Transgenic , Neural Stem Cells/metabolism , Presenilin-1/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, GABA-A/metabolism , Spatial Memory
14.
Nat Commun ; 12(1): 6810, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815409

ABSTRACT

The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice.


Subject(s)
CA1 Region, Hippocampal/physiopathology , Cognitive Dysfunction/physiopathology , Entorhinal Cortex/physiopathology , Mental Disorders/physiopathology , Prefrontal Cortex/physiopathology , Animals , Animals, Newborn , Cognitive Dysfunction/genetics , Cognitive Dysfunction/immunology , Disease Models, Animal , Female , Gene-Environment Interaction , Humans , Male , Mental Disorders/genetics , Mental Disorders/immunology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neural Pathways/physiopathology , Optogenetics , Patch-Clamp Techniques , Pregnancy
15.
Mol Brain ; 14(1): 147, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556177

ABSTRACT

Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.


Subject(s)
CA1 Region, Hippocampal/physiopathology , Cell Hypoxia/physiology , Delayed Rectifier Potassium Channels/physiology , Reperfusion Injury/physiopathology , Action Potentials/physiology , Animals , Culture Media/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , In Vitro Techniques , Inflammation , Kinetics , Membrane Potentials/physiology , Neuroprotective Agents/pharmacology , Patch-Clamp Techniques , Rats , Reperfusion , Tetrodotoxin/pharmacology
16.
Mol Neurobiol ; 58(11): 5756-5771, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34403042

ABSTRACT

Aging is an irreversible biological process that involves oxidative stress, neuroinflammation, and apoptosis, and eventually leads to cognitive dysfunction. However, the underlying mechanisms are not fully understood. In this study, we investigated the role and potential mechanisms of Synaptotagmin-7, a calcium membrane transporter in cognitive impairment in aging mice. Our results indicated that Synaptotagmin-7 expression significantly decreased in the hippocampus of D-galactose-induced or naturally aging mice when compared with healthy controls, as detected by western blot and quantitative reverse transcriptase-polymerase chain reaction analysis. Synaptotagmin-7 overexpression in the dorsal CA1 of the hippocampus reversed long-term potentiation and improved hippocampus-dependent spatial learning in D-galactose-induced aging mice. Synaptotagmin-7 overexpression also led to fully preserved learning and memory in 6-month-old mice. Mechanistically, we demonstrated that Synaptotagmin-7 improved learning and memory by elevating the level of fEPSP and downregulating the expression of aging-related genes such as p53 and p16. The results of our study provide new insights into the role of Synaptotagmin-7 in improving neuronal function and overcoming memory impairment caused by aging, suggesting that Synaptotagmin-7 overexpression may be an innovative therapeutic strategy for treating cognitive impairment.


Subject(s)
Aging/psychology , CA1 Region, Hippocampal/physiopathology , Cognition Disorders/physiopathology , Nerve Tissue Proteins/physiology , Synaptotagmins/physiology , Aging/metabolism , Animals , Cognition Disorders/therapy , Conditioning, Classical , Dependovirus/genetics , Electroshock , Fear/physiology , Galactose/toxicity , Gene Expression Regulation , Genes, Reporter , Genes, p16 , Genes, p53 , Genetic Vectors/administration & dosage , Long-Term Potentiation , Male , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Memory Disorders/therapy , Mice , Mice, Inbred C57BL , Morris Water Maze Test , Random Allocation , Recognition, Psychology , Recombinant Proteins/metabolism , Spatial Learning/drug effects , Specific Pathogen-Free Organisms , Synaptotagmins/genetics
17.
Neurobiol Dis ; 158: 105454, 2021 10.
Article in English | MEDLINE | ID: mdl-34333153

ABSTRACT

Patients with Alzheimer's disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock) in Tg-SwDI mice with human amyloid-beta precursor protein mutations. Here, we report that Tg-SwDI mice failed to show day/night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer's disease symptoms or delay pathological onset.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm/genetics , Gene Expression Regulation/genetics , Hippocampus/metabolism , Hippocampus/physiopathology , Spatial Memory , Synaptic Transmission , Animals , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , Excitatory Postsynaptic Potentials/genetics , Female , GABA Antagonists/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyramidal Cells , Receptor, PAR-2/biosynthesis , Receptor, PAR-2/genetics
18.
J Cell Mol Med ; 25(14): 7028-7038, 2021 07.
Article in English | MEDLINE | ID: mdl-34121317

ABSTRACT

Findings from recent studies have revealed that microRNAs (miRNAs) are related to numerous neurological disorders. However, whether miRNAs regulate neuronal anomalies involved in the pathogenesis of depression remain unclear. In the present study, we screened miRNA expression profiles in the CA1 hippocampus of a rat model of depression and found that a specific miRNA, microRNA-211-5p, was significantly down-regulated in depressed rats. When miR-211-5p was up-regulated in these rats, neuronal apoptosis within the CA1 area was suppressed, effects which were accompanied with an amelioration of depression-like behaviours in these rats. These neuroprotective effects of miR-211-5p in depressed rats appear to result through suppression of the Dyrk1A/ASK1/JNK signalling pathway within the CA1 area. In further support of this proposal are the findings that knock-down of miR-211-5p within the CA1 area of normal rats activated the Dyrk1A/ASK1/JNK pathway, resulting in the promotion of neuronal apoptosis and display of depression-like behaviours in these rats. Taken together, these results demonstrate that deficits in miR-211-5p contribute to neuronal apoptosis and thus depression-like behaviours in rats. Therefore, the miR-211-5p/Dyrk1A pathway may be critically involved in the pathogenesis of depression and serve as a potential therapeutic target for the treatment of depression.


Subject(s)
Apoptosis , Depression/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Stress, Psychological/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , Depression/genetics , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Kinase Kinase 5/metabolism , Male , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Wistar , Signal Transduction , Stress, Psychological/genetics , Dyrk Kinases
19.
Behav Brain Res ; 412: 113403, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34090940

ABSTRACT

The developmental period is critical in delineating plastic response to internal and external events. However, neurobehavioural effects of global cerebral ischemia (GCI) in the maturing brain remain largely unknown. This study characterised the effects of GCI experienced at puberty on adulthood (1) hippocampus CA1 neuronal damage, (2) cognitive and emotional impairments, and (3) glucocorticoid receptor (GR) expression. Effects of adolescent exposure to the phenol vanillic acid (VA) on post-ischemic outcomes were also determined. Male Long Evans rats (n = 35) were supplemented for 21 consecutive days (postnatal days 33-53) with VA (91 mg/kg) or nut paste vehicle (control) prior to a 10-min GCI or sham surgery. As adults, rats were tested in the Open Field Test (OFT), Elevated-Plus Maze (EPM), and Barnes Maze (BM). GR expression was determined in the basolateral amygdala (BLA), CA1, and paraventricular nucleus (PVN), and brain injury assessed via CA1 neuronal density. Adolescent GCI exposure induced extensive hippocampal CA1 injury, which was not prevented by VA supplementation. Behaviourally, GCI increased EPM exploration while having no impact on spatial memory. VA intake increased OFT peripheral exploration. Notably, while no delayed changes in CA1 and PVN GR immunoreactivity were noted, both treatments separately increased BLA GR expression when compared with sham-nut paste rats. Age at GCI occurrence plays a critical role on post-ischemic impairments. The observation of minimal functional impairments despite important CA1 neuronal damage supports use of compensatory mechanisms. Our findings also show daily VA supplementation during adolescence to have no protective effects on post-ischemic outcomes, contrasting adult intake.


Subject(s)
Brain Ischemia/drug therapy , Vanillic Acid/pharmacology , Age Factors , Animals , Brain Ischemia/physiopathology , CA1 Region, Hippocampal/physiopathology , Dietary Supplements , Hippocampus/metabolism , Impulsive Behavior/physiology , Male , Neurons/metabolism , Neuroprotective Agents/pharmacology , Rats , Rats, Long-Evans , Sexual Maturation/drug effects , Sexual Maturation/physiology , Vanillic Acid/metabolism
20.
PLoS Comput Biol ; 17(6): e1009115, 2021 06.
Article in English | MEDLINE | ID: mdl-34133417

ABSTRACT

Alzheimer's Disease (AD) is characterized by progressive neurodegeneration and cognitive impairment. Synaptic dysfunction is an established early symptom, which correlates strongly with cognitive decline, and is hypothesised to mediate the diverse neuronal network abnormalities observed in AD. However, how synaptic dysfunction contributes to network pathology and cognitive impairment in AD remains elusive. Here, we present a grid-cell-to-place-cell transformation model of long-term CA1 place cell dynamics to interrogate the effect of synaptic loss on network function and environmental representation. Synapse loss modelled after experimental observations in the APP/PS1 mouse model was found to induce firing rate alterations and place cell abnormalities that have previously been observed in AD mouse models, including enlarged place fields and lower across-session stability of place fields. Our results support the hypothesis that synaptic dysfunction underlies cognitive deficits, and demonstrate how impaired environmental representation may arise in the early stages of AD. We further propose that dysfunction of excitatory and inhibitory inputs to CA1 pyramidal cells may cause distinct impairments in place cell function, namely reduced stability and place map resolution.


Subject(s)
Alzheimer Disease/etiology , Models, Neurological , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Computational Biology , Computer Simulation , Disease Models, Animal , Grid Cells/pathology , Grid Cells/physiology , Humans , Mice , Nerve Net/pathology , Nerve Net/physiopathology , Neuronal Plasticity/physiology , Place Cells/pathology , Place Cells/physiology , Synapses/pathology , Synapses/physiology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...