Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Elife ; 132024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196812

ABSTRACT

Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus-host codiversification have been largely over-estimated.


The SARS-CoV-2 virus, which caused the recent global coronavirus pandemic, is the latest in a string of coronaviruses that have caused serious outbreaks. This group of coronaviruses can also infect other mammals and likely jumped between species ­ including from non-humans to humans ­ over the course of evolution. Determining when and how viruses evolved to infect humans can help scientists predict and prevent outbreaks. However, tracking the evolutionary trajectory of coronaviruses is challenging, and there are conflicting views on how often coronaviruses crossed between species and when these transitions likely occurred. Some studies suggest that coronaviruses originated early on in evolution and evolved together with their mammalian hosts, only occasionally jumping to and from different species. While others suggest they appeared more recently, and rapidly diversified by regularly transferring between species. To determine which is the most likely scenario, Maestri, Perez-Lamarque et al. developed a computational approach using already available data on the genetics and evolutionary history of mammals and coronaviruses. This revealed that coronaviruses originated recently in bats from East Asia and Europe, and primarily evolved by rapidly transferring between different mammalian species. This has led to geographical hotspots of diverse coronaviruses in East Asia and Europe. Maestri, Perez-Lamarque et al. found that it was rare for coronaviruses to spill over from bats to other types of mammals. Most of these spillovers resulted from coronaviruses jumping from bats to humans or domesticated animals. Humans appeared to be the main intermediary host that coronaviruses temporarily infected as they transferred from bats to other mammals. These findings ­ that coronaviruses emerged recently in evolution, jumped relatively frequently between species, and are geographically restricted ­ suggest that future transmissions are likely. Gathering more coronavirus samples from across the world and using even more powerful analysis tools could help scientists understand more about how these viruses recently evolved. These insights may lead to strategies for preventing new coronaviruses from emerging and spreading among humans.


Subject(s)
Chiroptera , Coronavirus , Mammals , Animals , Mammals/virology , Chiroptera/virology , Coronavirus/genetics , Coronavirus/classification , Humans , Phylogeny , Evolution, Molecular , Host Specificity , Europe , Genetic Variation , Biological Evolution , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/physiology
2.
Viruses ; 16(8)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39205206

ABSTRACT

Here, we report the results of a monitoring study of bat viruses in Austria to strengthen the knowledge of circulating viruses in Austrian bat populations. In this study, we analyzed 618 oropharyngeal and rectal swab samples from 309 bats and 155 pooled tissue samples from dead bats. Samples were collected from 18 different bat species from multiple locations in Austria, from November 2015 to April 2018, and examined for astroviruses, bornaviruses, coronaviruses, hantaviruses, morbilliviruses, orthomyxoviruses (influenza A/C/D viruses), pestiviruses and rhabdoviruses (lyssaviruses) using molecular techniques and sequencing. Using RT-qPCR, 36 samples revealed positive or suspicious results for astroviruses, Brno-hantaviruses, and coronaviruses in nine different bat species. Further sequencing revealed correspondent sequences in five samples. In contrast, none of the tested samples was positive for influenza viruses A/C/D, bornaviruses, morbilliviruses, lyssaviruses, or pestiviruses.


Subject(s)
Chiroptera , Animals , Chiroptera/virology , Austria , Pestivirus/genetics , Pestivirus/classification , Pestivirus/isolation & purification , Phylogeny , Astroviridae/genetics , Astroviridae/isolation & purification , Astroviridae/classification , Coronavirus/genetics , Coronavirus/classification , Coronavirus/isolation & purification , Lyssavirus/classification , Lyssavirus/genetics , Lyssavirus/isolation & purification , Morbillivirus/genetics , Morbillivirus/classification , Morbillivirus/isolation & purification , Orthomyxoviridae/classification , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Virus Diseases/virology , Virus Diseases/veterinary
3.
Viruses ; 16(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39066295

ABSTRACT

Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host-virus connections. Among the 69 host-virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520-680, 770-870, 2930-3070, and 4910-5080) exhibited the lowest Robinson-Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0-140, 60-180, 100-410, 360-550, and 630-730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360-1390, 550-1610, 680-1680, 700-1710, 2060-3090, and 2130-3250), and four within the spike protein (positions 10-510, 50-560, 170-710, and 230-730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.


Subject(s)
Chiroptera , Coronavirus , Phylogeny , Chiroptera/virology , Animals , Coronavirus/genetics , Coronavirus/classification , Coronavirus/physiology , Evolution, Molecular , Host-Pathogen Interactions/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Host Specificity , Coronavirus Infections/virology
4.
Nat Microbiol ; 9(8): 2038-2050, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39075235

ABSTRACT

Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses.


Subject(s)
COVID-19 , Chiroptera , Immunity, Innate , SARS-CoV-2 , Virus Replication , Animals , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Chiroptera/virology , Chiroptera/immunology , COVID-19/transmission , COVID-19/virology , COVID-19/immunology , Mice , Cricetinae , Immune Evasion , Epithelial Cells/virology , Epithelial Cells/immunology , Coronavirus Infections/transmission , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus/immunology , Coronavirus/genetics , Coronavirus/classification , Coronavirus/physiology , Coronavirus/pathogenicity , Cell Line , Female
5.
Vopr Virusol ; 69(3): 255-265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38996374

ABSTRACT

INTRODUCTION: Bats are natural reservoirs of coronaviruses (Coronaviridae), which have caused three outbreaks of human disease SARS, MERS and COVID-19 or SARS-2 over the past decade. The purpose of the work is to study the diversity of coronaviruses among bats inhabiting the foothills and mountainous areas of the Republics of Dagestan, Altai and the Kemerovo region. MATERIALS AND METHODS: Samples of bat oral swabs and feces were tested for the presence of coronavirus RNA by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: It has been shown that the greater horseshoe bats (Rhinolophus ferrumequinum), inhabiting the Republic of Dagestan, are carriers of two different coronaviruses. One of the two coronaviruses is a member of the Sarbecovius subgenus of the Betacoronavirus genus, which includes the causative agents of SARS and COVID-19. The second coronavirus is assigned to the Decacovirus subgenus of the Alphacoronavirus genus and is most similar to viruses identified among Rhinolophus spp. from European and Middle Eastern countries. In the Altai Republic and Kemerovo region, coronaviruses belonging to the genus Alphacoronavirus, subgenus Pedacovirus, were found in the smooth-nosed bats: Ikonnikov`s bat (Myotis ikonnikovi) and the eastern bat (Myotis petax). The virus from the Altai Republic from M. ikonnikovi is close to viruses from Japan and Korea, as well as viruses from Myotis spp. from European countries. The virus from the Kemerovo region from M. petax groups with coronaviruses from Myotis spp. from Asian countries and is significantly different from coronaviruses previously discovered in the same natural host.


Subject(s)
Chiroptera , Animals , Chiroptera/virology , Siberia/epidemiology , Phylogeny , Disease Reservoirs/virology , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Humans , Feces/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , COVID-19/veterinary , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology
6.
APMIS ; 132(9): 657-662, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38873951

ABSTRACT

An observational and retrospective study was carried out to analyse HCoV positivity from a multiplex PCR respiratory panel and RT-PCR for SARS-CoV-2 in respiratory samples from 1 June 2020 to 31 July 2023 at the Príncipe de Asturias University Hospital (HUPA) in Alcalá de Henares, Madrid, Spain. Out of 2802 respiratory panels, 1258 (44.8%) turned out positive. HCoV was detected in 114 (4%) cases (range 0-23; median 1.5; IQR 0-3.75) with positivity rates ranging from 0% to 14%. All four variants of HCoV circulated, and OC-43 was the most common in 62.3% of cases. After the onset of the pandemic, the HCoV season was delayed 22 weeks, with a peak positivity of 9% in the summer of 2021, showing an inverse relationship with the alpha and delta waves of SARS-CoV-2. In the two subsequent autumn-winter seasons, HCoV positivity increased (11-14%) with a reduction in the summer of 2022 and 2023 following the emergence of the omicron variant and the relaxation of social distancing measures. The seasonal spread pattern of endemic HCoV might be returning to normal in our region and likely in other temperate zones of the northern hemisphere after 3 years of the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Seasons , Humans , Spain/epidemiology , Retrospective Studies , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Adult , Male , Female , Aged , Young Adult , Adolescent , Child, Preschool , Child , Infant , Aged, 80 and over , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Endemic Diseases , Infant, Newborn
7.
Sci Rep ; 14(1): 12928, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839918

ABSTRACT

Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.


Subject(s)
Bison , Coronavirus Infections , Animals , Bison/virology , Poland/epidemiology , Female , Male , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Prevalence , Coronavirus/genetics , Coronavirus/classification , Coronavirus/isolation & purification , Seroepidemiologic Studies , Cattle , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Phylogeny , Antibodies, Viral/blood
8.
Virology ; 595: 110072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599031

ABSTRACT

Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.


Subject(s)
Genome, Viral , Phylogeny , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/classification , Europe , Swine Diseases/virology , United States , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Coronavirus/classification , Gastroenteritis, Transmissible, of Swine/virology
9.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675878

ABSTRACT

Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV molecular method that can detect a variety of CoVs from humans, animals, and environmental specimens is an initial step to ensure the early identification of known and new viruses. We examine a collection of 50 human, 46 wastewater, 28 bat, and 17 avian archived specimens using 3 published pan-CoV PCR assays called Q-, W-, and X-CoV PCR, to compare the performance of each assay against four CoV genera. X-CoV PCR can detect all four CoV genera, but Q- and W-CoV PCR failed to detect δ-CoV. In total, 21 (42.0%), 9 (18.0%), and 21 (42.0%) of 50 human specimens and 30 (65.22%), 6 (13.04%), and 27 (58.70%) of 46 wastewater specimens were detected using Q-, W-, and X-CoV PCR assays, respectively. The X-CoV PCR assay has a comparable sensitivity to Q-CoV PCR in bat CoV detection. Combining Q- and X-CoV PCR assays can increase sensitivity and avoid false negative results in the early detection of novel CoVs.


Subject(s)
Coronavirus , Sensitivity and Specificity , Humans , Animals , Coronavirus/genetics , Coronavirus/classification , Coronavirus/isolation & purification , Wastewater/virology , Chiroptera/virology , Birds/virology , Polymerase Chain Reaction/methods , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/diagnosis
10.
Microb Pathog ; 191: 106646, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631414

ABSTRACT

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Subject(s)
Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Rotavirus , Sensitivity and Specificity , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Real-Time Polymerase Chain Reaction/methods , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine Diseases/virology , Swine Diseases/diagnosis , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Feces/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology
11.
PLoS Pathog ; 20(4): e1012163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648214

ABSTRACT

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.


Subject(s)
Coronavirus , Genome, Viral , Nidovirales , Phylogeny , Animals , Nidovirales/genetics , Coronavirus/genetics , Coronavirus/classification , Vertebrates/virology , Vertebrates/genetics , Fishes/virology , Evolution, Molecular , Data Mining , Nidovirales Infections/virology , Nidovirales Infections/genetics
12.
J Virol ; 98(1): e0123923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38099687

ABSTRACT

Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.


Subject(s)
Coronavirus Infections , Coronavirus , Dyrk Kinases , Animals , Humans , Mice , CD13 Antigens/genetics , Coronavirus/classification , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Deltacoronavirus , Murine hepatitis virus/physiology , Swine , Transmissible gastroenteritis virus/genetics , Tyrosine , Virus Replication/physiology , Dyrk Kinases/metabolism
13.
mBio ; 13(3): e0046322, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35467426

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.


Subject(s)
Chiroptera , Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , China/epidemiology , Chiroptera/virology , Coronavirus/classification , Evolution, Molecular , Genome, Viral , Genomics , Humans , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
14.
Recent Pat Biotechnol ; 16(3): 226-242, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35379131

ABSTRACT

Coronaviruses hold idiosyncratic morphological features and functionality. The members of this group have a remarkable capability of infecting both animals and humans. Inimitably, the replication of the RNA genome continues through the set of viral mRNA molecules. Coronaviruses received least attention until 2003 since they caused only minor respiratory tract illnesses. However, this changed exclusively with the introduction of zoonotic SARS-CoV in 2003. In 2012, MERS-CoV emerged and confirmed this group of viruses as the major causative agents of severe respiratory tract illness. Today, Coronavirus Disease 2019 (i.e., COVID-19) has turned out to be a chief health problem that causes a severe acute respiratory disorder in humans. Since the first identification of COVID-19 in December 2019 in Wuhan, China, this infection has devastatingly spread all around the globe leading to a crippling affliction for humans. The strain is known as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and WHO (the World Health Organization) has termed this new pandemic disease as Coronavirus Disease (COVID-19). COVID-19 is still spreading, with an estimated 136 million confirmed cases and more than 2.94 million deaths worldwide so far. In the current scenario, there is no particular treatment for COVID-19; however, remarkable efforts for immunization and vaccine development can be observed. Therefore, the execution of precautions and proper preventive measures are indispensable to minimize and control the community transmission of the virus. This review summarizes information related to the pathophysiology, transmission, symptoms, the host defense mechanism plus immunization and vaccine development against COVID-19 including the patents filed.


Subject(s)
COVID-19/virology , Coronavirus/pathogenicity , Pandemics , SARS-CoV-2/pathogenicity , Animals , COVID-19/epidemiology , Coronavirus/classification , Coronavirus/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Patents as Topic , SARS-CoV-2/classification , SARS-CoV-2/genetics
15.
PLoS One ; 17(3): e0264949, 2022.
Article in English | MEDLINE | ID: mdl-35286334

ABSTRACT

BACKGROUND: In the context of COVID-19 pandemic in Catalonia (Spain), the present study analyses respiratory samples collected by the primary care network using Acute Respiratory Infections Sentinel Surveillance System (PIDIRAC) during the 2019-2020 season to complement the pandemic surveillance system in place to detect SARS-CoV-2. The aim of the study is to describe whether SARS-CoV-2 was circulating before the first confirmed case was detected in Catalonia, on February 25th, 2020. METHODS: The study sample was made up of all samples collected by the PIDIRAC primary care network as part of the Influenza and Acute Respiratory Infections (ARI) surveillance system activities. The study on respiratory virus included coronavirus using multiple RT-PCR assays. All positive samples for human coronavirus were subsequently typed for HKU1, OC43, NL63, 229E. Every respiratory sample was frozen at-80°C and retrospectively studied for SARS-CoV-2 detection. A descriptive study was performed, analysing significant differences among variables related to SARS-CoV- 2 cases comparing with rest of coronaviruses cases through a bivariate study with Chi-squared test and statistical significance at 95%. RESULTS: Between October 2019 and April 2020, 878 respiratory samples from patients with acute respiratory infection or influenza syndrome obtained by PIDIRAC were analysed. 51.9% tested positive for influenza virus, 48.1% for other respiratory viruses. SARS-CoV-2 was present in 6 samples. The first positive SARS-CoV-2 case had symptom onset on 2 March 2020. These 6 cases were 3 men and 3 women, aged between 25 and 50 years old. 67% had risk factors, none had previous travel history nor presented viral coinfection. All of them recovered favourably. CONCLUSION: Sentinel Surveillance PIDIRAC enhances global epidemiological surveillance by allowing confirmation of viral circulation and describes the epidemiology of generalized community respiratory viruses' transmission in Catalonia. The system can provide an alert signal when identification of a virus is not achieved in order to take adequate preparedness measures.


Subject(s)
COVID-19/diagnosis , Coronavirus/classification , Orthomyxoviridae/classification , RNA, Viral/genetics , Respiratory Tract Infections/virology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Coronavirus/genetics , Coronavirus/isolation & purification , Female , Humans , Infant , Male , Middle Aged , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Primary Health Care , Retrospective Studies , Sentinel Surveillance , Spain/epidemiology , Young Adult
16.
PLoS One ; 17(3): e0264640, 2022.
Article in English | MEDLINE | ID: mdl-35259178

ABSTRACT

The SARS-CoV-2 is the third coronavirus in addition to SARS-CoV and MERS-CoV that causes severe respiratory syndrome in humans. All of them likely crossed the interspecific barrier between animals and humans and are of zoonotic origin, respectively. The origin and evolution of viruses and their phylogenetic relationships are of great importance for study of their pathogenicity and development of antiviral drugs and vaccines. The main objective of the presented study was to compare two methods for identifying relationships between coronavirus genomes: phylogenetic one based on the whole genome alignment followed by molecular phylogenetic tree inference and alignment-free clustering of triplet frequencies, respectively, using 69 coronavirus genomes selected from two public databases. Both approaches resulted in well-resolved robust classifications. In general, the clusters identified by the first approach were in good agreement with the classes identified by the second using K-means and the elastic map method, but not always, which still needs to be explained. Both approaches demonstrated also a significant divergence of genomes on a taxonomic level, but there was less correspondence between genomes regarding the types of diseases they caused, which may be due to the individual characteristics of the host. This research showed that alignment-free methods are efficient in combination with alignment-based methods. They have a significant advantage in computational complexity and provide valuable additional alternative information on the genomes relationships.


Subject(s)
Comparative Genomic Hybridization/methods , Coronavirus/genetics , Genome, Viral , Chromosome Mapping , Cluster Analysis , Coronavirus/classification , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , Sequence Alignment
17.
Microbiol Spectr ; 10(1): e0278021, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196796

ABSTRACT

Understanding the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV-2) is critical to overcome the current coronavirus disease (COVID-19) pandemic. Efforts are being made to understand the potential cross-protective immunity of memory T cells, induced by prior encounters with seasonal coronaviruses, in providing protection against severe COVID-19. In this study we assessed T-cell responses directed against highly conserved regions of SARS-CoV-2. Epitope mapping revealed 16 CD8+ T-cell epitopes across the nucleocapsid (N), spike (S), and open reading frame (ORF)3a proteins of SARS-CoV-2 and five CD8+ T-cell epitopes encoded within the highly conserved regions of the ORF1ab polyprotein of SARS-CoV-2. Comparative sequence analysis showed high conservation of SARS-CoV-2 ORF1ab T-cell epitopes in seasonal coronaviruses. Paradoxically, the immune responses directed against the conserved ORF1ab epitopes were infrequent and subdominant in both convalescent and unexposed participants. This subdominant immune response was consistent with a low abundance of ORF1ab encoded proteins in SARS-CoV-2 infected cells. Overall, these observations suggest that while cross-reactive CD8+ T cells likely exist in unexposed individuals, they are not common and therefore are unlikely to play a significant role in providing broad preexisting immunity in the community. IMPORTANCE T cells play a critical role in protection against SARS-CoV-2. Despite being highly topical, the protective role of preexisting memory CD8+ T cells, induced by prior exposure to circulating common coronavirus strains, remains less clear. In this study, we established a robust approach to specifically assess T cell responses to highly conserved regions within SARS-CoV-2. Consistent with recent observations we demonstrate that recognition of these highly conserved regions is associated with an increased likelihood of milder disease. However, extending these observations we observed that recognition of these conserved regions is rare in both exposed and unexposed volunteers, which we believe is associated with the low abundance of these proteins in SARS-CoV-2 infected cells. These observations have important implications for the likely role preexisting immunity plays in controlling severe disease, further emphasizing the importance of vaccination to generate the immunodominant T cells required for immune protection.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , COVID-19/genetics , COVID-19/virology , Conserved Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Memory T Cells/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
18.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35215770

ABSTRACT

Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on -1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed -1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit -1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/genetics , Frameshift Mutation , Frameshifting, Ribosomal/drug effects , Viral Proteins/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , Chiroptera/virology , Coronavirus/classification , Coronavirus Infections/drug therapy , Nucleic Acid Conformation , RNA, Messenger/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics , Virus Replication/drug effects
19.
Microbiol Spectr ; 10(1): e0165521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35107326

ABSTRACT

Although lessons have been learned from previous severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, the rapid evolution of the viruses means that future outbreaks of a much larger scale are possible, as shown by the current coronavirus disease 2019 (COVID-19) outbreak. Therefore, it is necessary to better understand the evolution of coronaviruses as well as viruses in general. This study reports a comparative analysis of the amino acid usage within several key viral families and genera that are prone to triggering outbreaks, including coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], SARS-CoV, MERS-CoV, human coronavirus-HKU1 [HCoV-HKU1], HCoV-OC43, HCoV-NL63, and HCoV-229E), influenza A (H1N1 and H3N2), flavivirus (dengue virus serotypes 1 to 4 and Zika) and ebolavirus (Zaire, Sudan, and Bundibugyo ebolavirus). Our analysis reveals that the distribution of amino acid usage in the viral genome is constrained to follow a linear order, and the distribution remains closely related to the viral species within the family or genus. This constraint can be adapted to predict viral mutations and future variants of concern. By studying previous SARS and MERS outbreaks, we have adapted this naturally occurring pattern to determine that although pangolin plays a role in the outbreak of COVID-19, it may not be the sole agent as an intermediate animal. In addition to this study, our findings contribute to the understanding of viral mutations for subsequent development of vaccines and toward developing a model to determine the source of the outbreak. IMPORTANCE This study reports a comparative analysis of amino acid usage within several key viral genera that are prone to triggering outbreaks. Interestingly, there is evidence that the amino acid usage within the viral genomes is not random but in a linear order.


Subject(s)
Coronavirus/genetics , Ebolavirus/genetics , Evolution, Molecular , Flavivirus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Codon , Coronavirus/classification , Genome, Viral , Humans , Linear Models , Mutation , SARS-CoV-2/genetics , Virus Diseases/virology
20.
J Gen Virol ; 103(1)2022 01.
Article in English | MEDLINE | ID: mdl-35014605

ABSTRACT

The pandemic caused by SARS-CoV-2 has led to the successful development of effective vaccines however the prospect of variants of SARS-CoV-2 and future coronavirus outbreaks necessitates the investigation of other vaccine strategies capable of broadening vaccine mediated T-cell responses and potentially providing cross-immunity. In this study the SARS-CoV-2 proteome was assessed for clusters of immunogenic epitopes restricted to diverse human leucocyte antigen. These regions were then assessed for their conservation amongst other coronaviruses representative of different alpha and beta coronavirus genera. Sixteen highly conserved peptides containing numerous HLA class I and II restricted epitopes were synthesized from these regions and assessed in vitro for their antigenicity against T-cells from individuals with previous SARS-CoV-2 infection. Monocyte derived dendritic cells were generated from these peripheral blood mononuclear cells (PBMC), loaded with SARS-CoV-2 peptides, and used to induce autologous CD4+ and CD8+ T cell activation. The SARS-CoV-2 peptides demonstrated antigenicity against the T-cells from individuals with previous SARS-CoV-2 infection indicating that this approach holds promise as a method to activate anti-SAR-CoV-2 T-cell responses from conserved regions of the virus which are not included in vaccines utilising the Spike protein.


Subject(s)
Peptides/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Amino Acid Sequence , COVID-19 Vaccines , Coronavirus/classification , Coronavirus/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA Antigens/immunology , Humans , Leukocytes, Mononuclear/immunology , Lymphocyte Activation , Peptides/chemical synthesis , Peptides/chemistry , Proteome/immunology , Vaccines, Subunit , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL