Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.827
1.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844781

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Cell Proliferation , Cyclic GMP , Forkhead Box Protein O3 , Natriuretic Peptide, C-Type , Pericytes , Signal Transduction , Humans , Pericytes/metabolism , Pericytes/pathology , Natriuretic Peptide, C-Type/metabolism , Cyclic GMP/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Adult , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Cells, Cultured
2.
Virulence ; 15(1): 2367652, 2024 Dec.
Article En | MEDLINE | ID: mdl-38912723

ß-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent ß-lactam resistance in Enterobacter cloacae. However, NagZ's role in the virulence of E. cloacae remains unclear. Our study, incorporating data on mouse and Galleria mellonella larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of E. cloacae following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.


Enterobacter cloacae , Animals , Virulence , Mice , Enterobacter cloacae/genetics , Enterobacter cloacae/pathogenicity , Enterobacter cloacae/drug effects , Larva/microbiology , Moths/microbiology , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Enterobacteriaceae Infections/microbiology , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Gene Expression Regulation, Bacterial , Gene Knockout Techniques
3.
Cephalalgia ; 44(6): 3331024241259489, 2024 Jun.
Article En | MEDLINE | ID: mdl-38850034

BACKGROUND: The cAMP and cGMP pathways are implicated in the initiation of migraine attacks, but their interactions remain unclear. Calcitonin gene-related peptide (CGRP) triggers migraine attacks via cAMP, whereas the phosphodiesterase-5 inhibitor sildenafil induces migraine attacks via cGMP. Our objective was to investigate whether sildenafil could induce migraine attacks in individuals with migraine pre-treated with the CGRP-receptor antibody erenumab. METHODS: In this randomized, double-blind, placebo-controlled, cross-over study, adults with migraine without aura received a single subcutaneous injection of 140 mg erenumab on day 1. They were then randomized to receive sildenafil 100 mg or placebo on two experimental days, each separated by at least one week, between days 8 and 21. The primary endpoint was the difference in the incidence of migraine attacks between sildenafil and placebo during the 12-h observation period after administration. RESULTS: In total, 16 participants completed the study. Ten participants (63%) experienced a migraine attack within 12 h after sildenafil administration compared to three (19%) after placebo (p = 0.016). The median headache intensity was higher after sildenafil than after placebo (area under the curve (AUC) for the 12-h observation period, p = 0.026). Furthermore, sildenafil induced a significant decrease in mean arterial blood pressure (AUC, p = 0.026) and a simultaneous increase in heart rate (AUC, p < 0.001) during the first hour after administration compared to placebo. CONCLUSION: These findings provide evidence that migraine induction via the cGMP pathway can occur even under CGRP receptor blockade. TRIAL REGISTRATION: ClinicalTrials.gov: Identifier NCT05889455.


Cross-Over Studies , Cyclic GMP , Migraine Disorders , Receptors, Calcitonin Gene-Related Peptide , Sildenafil Citrate , Humans , Adult , Male , Double-Blind Method , Female , Sildenafil Citrate/pharmacology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Migraine Disorders/metabolism , Migraine Disorders/chemically induced , Middle Aged , Cyclic GMP/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Phosphodiesterase 5 Inhibitors/pharmacology , Young Adult
4.
Cells ; 13(11)2024 May 24.
Article En | MEDLINE | ID: mdl-38891035

Akt is an important kinase in metabolism. Akt also phosphorylates and activates endothelial and neuronal nitric oxide (NO) synthases (eNOS and nNOS, respectively) expressed in M0 (unpolarized) macrophages. We showed that e/nNOS NO production downstream of bitter taste receptors enhances macrophage phagocytosis. In airway epithelial cells, we also showed that the activation of Akt by a small molecule (SC79) enhances NO production and increases levels of nuclear Nrf2, which reduces IL-8 transcription during concomitant stimulation with Toll-like receptor (TLR) 5 agonist flagellin. We hypothesized that SC79's production of NO in macrophages might likewise enhance phagocytosis and reduce the transcription of some pro-inflammatory cytokines. Using live cell imaging of fluorescent biosensors and indicator dyes, we found that SC79 induces Akt activation, NO production, and downstream cGMP production in primary human M0 macrophages. This was accompanied by a reduction in IL-6, IL-8, and IL-12 production during concomitant stimulation with bacterial lipopolysaccharide, an agonist of pattern recognition receptors including TLR4. Pharmacological inhibitors suggested that this effect was dependent on Akt and Nrf2. Together, these data suggest that several macrophage immune pathways are regulated by SC79 via Akt. A small-molecule Akt activator may be useful in some infection settings, warranting future in vivo studies.


Cytokines , Macrophages , Nitric Oxide , Phagocytosis , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phagocytosis/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cytokines/metabolism , Nitric Oxide/metabolism , NF-E2-Related Factor 2/metabolism , Cyclic GMP/metabolism , Lipopolysaccharides/pharmacology
5.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38870058

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Agrobacterium tumefaciens , Bacterial Proteins , Biofilms , Cyclic GMP , Pterins , Biofilms/growth & development , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/genetics , Pterins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteobacteria/metabolism , Proteobacteria/genetics , Molybdenum Cofactors , Periplasm/metabolism , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/genetics , Gene Expression Regulation, Bacterial
6.
NPJ Biofilms Microbiomes ; 10(1): 51, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38902226

Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.


Biofilms , Cyclic GMP , Larva , Metamorphosis, Biological , Mytilus , Animals , Larva/microbiology , Larva/growth & development , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Mytilus/microbiology , Mytilus/growth & development , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Membrane Proteins/genetics , Membrane Proteins/metabolism
7.
Arch Microbiol ; 206(7): 321, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38907796

Vibrio parahaemolyticus possesses two distinct type VI secretion systems (T6SS), namely T6SS1 and T6SS2. T6SS1 is predominantly responsible for adhesion to Caco-2 and HeLa cells and for the antibacterial activity of V. parahaemolyticus, while T6SS2 mainly contributes to HeLa cell adhesion. However, it remains unclear whether the T6SS systems have other physiological roles in V. parahaemolyticus. In this study, we demonstrated that the deletion of icmF2, a structural gene of T6SS2, reduced the biofilm formation capacity of V. parahaemolyticus under low salt conditions, which was also influenced by the incubation time. Nonetheless, the deletion of icmF2 did not affect the biofilm formation capacity in marine-like growth conditions, nor did it impact the flagella-driven swimming and swarming motility of V. parahaemolyticus. IcmF2 was found to promote the production of the main components of the biofilm matrix, including extracellular DNA (eDNA) and extracellular proteins, and cyclic di-GMP (c-di-GMP) in V. parahaemolyticus. Additionally, IcmF2 positively influenced the transcription of cpsA, mfpA, and several genes involved in c-di-GMP metabolism, including scrJ, scrL, vopY, tpdA, gefA, and scrG. Conversely, the transcription of scrA was negatively impacted by IcmF2. Therefore, IcmF2-dependent biofilm formation was mediated through its effects on the production of eDNA, extracellular proteins, and c-di-GMP, as well as its impact on the transcription of cpsA, mfpA, and genes associated with c-di-GMP metabolism. This study confirmed new physiological roles for IcmF2 in promoting biofilm formation and c-di-GMP production in V. parahaemolyticus.


Bacterial Proteins , Biofilms , Cyclic GMP , Type VI Secretion Systems , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/physiology , Vibrio parahaemolyticus/metabolism , Biofilms/growth & development , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Humans , Gene Expression Regulation, Bacterial , HeLa Cells
8.
Microbiol Res ; 285: 127748, 2024 Aug.
Article En | MEDLINE | ID: mdl-38735241

The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.


Biofilms , Chemotaxis , Cyclic GMP , Plant Roots , Plants , Symbiosis , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Plants/microbiology , Plant Roots/microbiology , Bacteria/metabolism , Bacteria/genetics , Rhizosphere , Plant Root Nodulation , Second Messenger Systems , Bacterial Physiological Phenomena , Soil Microbiology
9.
Nat Commun ; 15(1): 3920, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724508

Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.


Biofilms , Biosensing Techniques , Cyclic GMP , Biosensing Techniques/methods , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Signal Transduction , Escherichia coli/metabolism , Escherichia coli/genetics , Second Messenger Systems
10.
Sci Rep ; 14(1): 11898, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789479

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.


BCG Vaccine , Biofilms , Cyclic GMP , Lipidomics , Macrophages , Mycobacterium bovis , Myeloid Differentiation Factor 88 , Transcriptome , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , BCG Vaccine/immunology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Biofilms/growth & development , Cytokines/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gene Expression Profiling , Lectins, C-Type
11.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791377

Phosphodiesterases (PDEs) are ubiquitous enzymes that hydrolyse cAMP and cGMP second messengers temporally, spatially, and integratedly according to their expression and compartmentalization inside the cell [...].


Phosphoric Diester Hydrolases , Phosphoric Diester Hydrolases/metabolism , Humans , Animals , Cyclic AMP/metabolism , Cyclic GMP/metabolism
12.
Biosensors (Basel) ; 14(5)2024 May 16.
Article En | MEDLINE | ID: mdl-38785726

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Phosphodiesterase Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Humans , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/metabolism , High-Throughput Screening Assays , Biosensing Techniques , Cyclic GMP/metabolism , Drug Evaluation, Preclinical
13.
Physiol Rep ; 12(9): e16033, 2024 May.
Article En | MEDLINE | ID: mdl-38740564

The pathophysiology behind sodium retention in heart failure with preserved ejection fraction (HFpEF) remains poorly understood. We hypothesized that patients with HFpEF have impaired natriuresis and diuresis in response to volume expansion and diuretic challenge, which is associated with renal hypo-responsiveness to endogenous natriuretic peptides. Nine HFpEF patients and five controls received saline infusion (0.25 mL/kg/min for 60 min) followed by intravenous furosemide (20 mg or home dose) 2 h after the infusion. Blood and urine samples were collected at baseline, 2 h after saline infusion, and 2 h after furosemide administration; urinary volumes were recorded. The urinary cyclic guanosine monophosphate (ucGMP)/plasma B-type NP (BNP) ratio was calculated as a measure of renal response to endogenous BNP. Wilcoxon rank-sum test was used to compare the groups. Compared to controls, HFpEF patients had reduced urine output (2480 vs.3541 mL; p = 0.028), lower urinary sodium excretion over 2 h after saline infusion (the percentage of infused sodium excreted 12% vs. 47%; p = 0.003), and a lower baseline ucGMP/plasma BNP ratio (0.7 vs. 7.3 (pmol/mL)/(mg/dL)/(pg/mL); p = 0.014). Patients with HFpEF had impaired natriuretic response to intravenous saline and furosemide administration and lower baseline ucGMP/plasma BNP ratios indicating renal hypo-responsiveness to NPs.


Furosemide , Heart Failure , Kidney , Natriuretic Peptide, Brain , Sodium , Stroke Volume , Humans , Heart Failure/physiopathology , Heart Failure/metabolism , Male , Female , Aged , Pilot Projects , Furosemide/pharmacology , Furosemide/administration & dosage , Sodium/metabolism , Sodium/urine , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Kidney/metabolism , Kidney/physiopathology , Kidney/drug effects , Middle Aged , Natriuresis/drug effects , Diuretics/pharmacology , Diuretics/administration & dosage , Cyclic GMP/metabolism , Cyclic GMP/urine , Aged, 80 and over
14.
Sci Rep ; 14(1): 10777, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734687

Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.


CLOCK Proteins , Cyclic GMP , Heart Failure , Signal Transduction , Soluble Guanylyl Cyclase , Animals , Mice , Heart Failure/metabolism , Heart Failure/etiology , Heart Failure/physiopathology , Cyclic GMP/metabolism , Soluble Guanylyl Cyclase/metabolism , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Male , Disease Models, Animal , Phenotype , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Myocytes, Cardiac/metabolism , Circadian Rhythm/physiology , Mice, Inbred C57BL , Chronobiology Disorders/metabolism , Stroke Volume
15.
World J Urol ; 42(1): 333, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761255

PURPOSE: Benign prostatic hyperplasia (BPH) is one of the most prevalent diseases affecting aging males. However, approximately, 8% of the BPH patients under 50-year-old experience remarkably early progression, for reasons that remain elusive. Among the various factors implicated in promoting BPH advancement, the activation of fibroblasts and autophagy hold particular importance. Our research endeavors to explore the mechanisms behind the accelerated progression in these patients. METHODS: Immunohistochemistry and immunofluorescence were performed to detect the expression levels of LC3, p62, PDE5, and α-SMA in diverse BPH tissues and prostate stromal cells. The autophagy activator rapamycin, the autophagy suppressor chloroquine, and siRNA transfection were used to identify the impact of autophagy on fibroblast activation. RESULTS: Prostatic stromal fibroblasts in early progressive BPH tissues displayed activation of autophagy with an upregulation of LC3 and a concurrent downregulation of p62. After starvation or rapamycin treatment to a heightened level of autophagy, fibroblasts exhibited activation. Conversely, chloroquine treatment and ATG-7-knockdown effectively suppressed the level of autophagy and fibroblast activation. High expression of PDE5 was found in early progressive BPH stromal cells. The administration of PDE5 inhibitors (PDE5Is) hindered fibroblast activation through suppressing autophagy by inhibiting the ERK signaling pathway. CONCLUSION: Our findings suggest that autophagy plays a pivotal role in promoting BPH progression through fibroblast activation, while PDE5Is effectively suppress autophagy and fibroblast activation via the ERK signaling pathway. Nevertheless, further investigations are warranted to comprehensively elucidate the role of autophagy in BPH progression.


Autophagy , Disease Progression , Down-Regulation , Fibroblasts , MAP Kinase Signaling System , Phosphodiesterase 5 Inhibitors , Prostatic Hyperplasia , Male , Humans , Autophagy/physiology , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Fibroblasts/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , MAP Kinase Signaling System/physiology , Middle Aged , Cyclic GMP/metabolism , Aged , Signal Transduction
16.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791239

Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.


Bacillus , Bacterial Proteins , Biofilms , Biofilms/growth & development , Bacillus/physiology , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Rhizosphere
17.
Anal Chem ; 96(21): 8308-8316, 2024 May 28.
Article En | MEDLINE | ID: mdl-38752543

Microbial biofilms represent an important lifestyle for bacteria and are dynamic three-dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable toward understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest from a single sample.


Biofilms , Cyclic GMP , Pseudomonas aeruginosa , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vibrio cholerae , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cyclic GMP/analysis , Pseudomonas aeruginosa/metabolism , Vibrio cholerae/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aliivibrio fischeri/metabolism
18.
Appl Environ Microbiol ; 90(6): e0050824, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38717126

Solid surfaces submerged in liquid in natural environments alter bacterial swimming behavior and serve as platforms for bacteria to form biofilms. In the initial stage of biofilm formation, bacteria detect surfaces and increase the intracellular level of the second messenger c-di-GMP, leading to a reduction in swimming speed. The impact of this speed reduction on bacterial surface swimming remains unclear. In this study, we utilized advanced microscopy techniques to examine the effect of swimming speed on bacterial surface swimming behavior. We found that a decrease in swimming speed reduces the cell-surface distance and prolongs the surface trapping time. Both these effects would enhance bacterial surface sensing and increase the likelihood of cells adhering to the surface, thereby promoting biofilm formation. We also examined the surface-escaping behavior of wild-type Escherichia coli and Pseudomonas aeruginosa, noting distinct surface-escaping mechanisms between the two bacterial species. IMPORTANCE: In the early phase of biofilm formation, bacteria identify surfaces and increase the intracellular level of the second messenger c-di-GMP, resulting in a decrease in swimming speed. Here, we utilized advanced microscopy techniques to investigate the impact of swimming speed on bacterial surface swimming, focusing on Escherichia coli and Pseudomonas aeruginosa. We found that an increase in swimming speed led to an increase in the radius of curvature and a decrease in surface detention time. These effects were explained through hydrodynamic modeling as a result of an increase in the cell-surface distance with increasing swimming speed. We also observed distinct surface-escaping mechanisms between the two bacterial species. Our study suggests that a decrease in swimming speed could enhance the likelihood of cells adhering to the surface, promoting biofilm formation. This sheds light on the role of reduced swimming speed in the transition from motile to sedentary bacterial lifestyles.


Biofilms , Cyclic GMP , Escherichia coli , Pseudomonas aeruginosa , Escherichia coli/physiology , Biofilms/growth & development , Pseudomonas aeruginosa/physiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Bacterial Adhesion
19.
Mol Biol Rep ; 51(1): 510, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622307

Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.


Diethylstilbestrol/analogs & derivatives , Neurodegenerative Diseases , Parkinson Disease , Phosphodiesterase 4 Inhibitors , Animals , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Parkinson Disease/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Cyclic AMP/metabolism , Neurodegenerative Diseases/metabolism , Cyclic GMP/metabolism , Mammals/metabolism
20.
Nitric Oxide ; 147: 13-25, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38588917

In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.


Cyclic GMP , Lung , Nitric Oxide , Nitric Oxide/metabolism , Humans , Lung/metabolism , Animals , Cyclic GMP/metabolism , Infant, Newborn , Signal Transduction , Fetus/metabolism
...