Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.868
Filter
1.
Pain Res Manag ; 2024: 2437396, 2024.
Article in English | MEDLINE | ID: mdl-39104725

ABSTRACT

Tuina is a treatment method in traditional Chinese medicine which has analgesic effects and effectively alleviates the symptoms of neuropathic pain (NP). Transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) play major roles in transmitting nociceptive sensory signals in the nociceptive primary sensory dorsal root ganglion (DRG) nerve. The nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate(cGMP) pathway exerts both nociceptive and antinociceptive effects in various chronic pain models. TRPV1 and TRPA1 mediate the influx of calcium, which stimulates the generation of NO. Subsequently, NO activates the NO/cGMP/protein kinase G (PKG) signaling pathway, thereby improving hyperalgesia. In the present study, oa rat model of NP with minor chronic constriction injury (CCI) of the right sciatic nerve of NP was established. The results of behavioral testing showed that, after a one-time tuina intervention, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were prolonged to varying degrees in the tuina group compared with the model group. Similarly, the expression of TRPV1, TRPA1, NO, soluble guanylate cyclase ß (sGCß), cGMP, and PKG1 was significantly decreased in the DRG of the tuina and tuina + TRPV1/TRPA1 antagonist group was significantly decreased. These findings suggest that the tuina intervention can effectively improve the symptoms of thermal and mechanical allodynia caused by peripheral nerve injuries. Tuina exerts immediate analgesic effects through the TRPV1/TRPA1-NO-cGMP-PKG signaling pathway.


Subject(s)
Cyclic GMP , Disease Models, Animal , Ganglia, Spinal , Rats, Sprague-Dawley , Signal Transduction , TRPA1 Cation Channel , TRPV Cation Channels , Animals , Ganglia, Spinal/metabolism , TRPV Cation Channels/metabolism , Male , Cyclic GMP/metabolism , TRPA1 Cation Channel/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Rats , Neuralgia/metabolism , Neuralgia/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Hyperalgesia/metabolism , Hyperalgesia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
2.
Bull Exp Biol Med ; 177(2): 212-216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39093471

ABSTRACT

The effect of a promising NO donor, a binuclear nitrosyl iron complex (NIC) with 3,4-dichlorothiophenolyls [Fe2(SC6H3Cl2)2(NO)4], on the adenylate cyclase and soluble guanylate cyclase enzymatic systems was studied. In in vitro experiments, this complex increased the concentration of important secondary messengers, such as cAMP and cGMP. An increase of their level by 2.4 and 4.5 times, respectively, was detected at NIC concentration of 0.1 mM. The ligand of the complex, 3,4-dichlorothiophenol, produced a less pronounced effect on adenylate cyclase. It was shown that the effect of this complex on the activity of soluble guanylate cyclase was comparable to the effect of anionic nitrosyl complex with thiosulfate ligands that exhibits vasodilating and cardioprotective properties.


Subject(s)
Cyclic AMP , Cyclic GMP , Cyclic GMP/metabolism , Cyclic AMP/metabolism , Animals , Iron/metabolism , Iron/chemistry , Adenylyl Cyclases/metabolism , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Soluble Guanylyl Cyclase/metabolism , Nitrogen Oxides/pharmacology , Nitrogen Oxides/metabolism , Nitrogen Oxides/chemistry , Rats
3.
Clin Transl Med ; 14(8): e1744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166890

ABSTRACT

BACKGROUND: Severe bacterial infections can trigger acute lung injury (ALI) and acute respiratory distress syndrome, with bacterial pathogen-associated molecular patterns (PAMPs) exacerbating the inflammatory response, particularly in COVID-19 patients. Cyclic-di-GMP (CDG), one of the PAMPs, is synthesized by various Gram-positve and Gram-negative bacteria. Previous studies mainly focused on the inflammatory responses triggered by intracellular bacteria-released CDG. However, how extracellular CDG, which is released by bacterial autolysis or rupture, activates the inflammatory response remains unclear. METHODS: The interaction between extracellular CDG and myeloid differentiation protein 2 (MD2) was investigated using in vivo and in vitro models. MD2 blockade was achieved using specific inhibitor and genetic knockout mice. Site-directed mutagenesis, co-immunoprecipitation, SPR and Bis-ANS displacement assays were used to identify the potential binding sites of MD2 on CDG. RESULTS: Our data show that extracellular CDG directly interacts with MD2, leading to activation of the TLR4 signalling pathway and lung injury. Specific inhibitors or genetic knockout of MD2 in mice significantly alleviated CDG-induced lung injury. Moreover, isoleucine residues at positions 80 and 94, along with phenylalanine at position 121, are essential for the binding of MD2 to CDG. CONCLUSION: These results reveal that extracellular CDG induces lung injury through direct interaction with MD2 and activation of the TLR4 signalling pathway, providing valuable insights into bacteria-induced ALI mechanisms and new therapeutic approaches for the treatment of bacterial co-infection in COVID-19 patients.


Subject(s)
Acute Lung Injury , COVID-19 , Cyclic GMP , Lymphocyte Antigen 96 , Acute Lung Injury/metabolism , Lymphocyte Antigen 96/metabolism , Animals , Mice , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Humans , COVID-19/metabolism , COVID-19/complications , Mice, Knockout , Inflammation/metabolism , SARS-CoV-2 , Toll-Like Receptor 4/metabolism , Mice, Inbred C57BL , Signal Transduction , Male
4.
Microbiol Res ; 287: 127864, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116779

ABSTRACT

The functional amyloid of Pseudomonas (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of Pseudomonas fluorescens PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of fap genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our in vivo data showed that the REC domain deletion of BrfA promoted fap gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of fapA in a BrfA-dependent manner. In in vitro experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of fapA, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the fapA promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. In vivo experiments using a lacZ fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of fapA transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in P. fluorescens. Fap functional amyloids and BrfA-type transcription factors are widespread in Pseudomonas species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of fap provided by this work will contribute to the development of antibiofilm strategies.


Subject(s)
Bacterial Proteins , Biofilms , Cyclic GMP , Gene Expression Regulation, Bacterial , Pseudomonas fluorescens , Biofilms/growth & development , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Pseudomonas fluorescens/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Amyloid/metabolism , Promoter Regions, Genetic , Protein Binding , Sigma Factor/genetics , Sigma Factor/metabolism
5.
Med Sci (Paris) ; 40(6-7): 534-543, 2024.
Article in French | MEDLINE | ID: mdl-38986098

ABSTRACT

Cyclic nucleotide phosphodiesterases (PDEs) modulate neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple isoforms of PDEs with different enzymatic properties and subcellular locally regulate cyclic nucleotide levels and associated cellular functions. This organisation is severely disrupted during hypertrophy and heart failure (HF), which may contribute to disease progression. Clinically, PDE inhibition has been seen as a promising approach to compensate for the catecholamine desensitisation that accompanies heart failure. Although PDE3 inhibitors such as milrinone or enoximone can be used clinically to improve systolic function and relieve the symptoms of acute CHF, their chronic use has proved detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as potential new targets for the treatment of HF, each with a unique role in local cyclic nucleotide signalling pathways. In this review, we describe cAMP and cGMP signalling in cardiomyocytes and present the different families of PDEs expressed in the heart and their modifications in pathological cardiac hypertrophy and HF. We also review results from preclinical models and clinical data indicating the use of specific PDE inhibitors or activators that may have therapeutic potential in CI.


Title: Les phosphodiestérases des nucléotides cycliques - Cibles thérapeutiques dans l'hypertrophie et l'insuffisance cardiaques. Abstract: Les phosphodiestérases des nucléotides cycliques (PDE) modulent la régulation neuro-hormonale de la fonction cardiaque en dégradant l'AMPc et le GMPc. Dans les cardiomyocytes, de multiples isoformes de PDE, aux propriétés enzymatiques et aux localisations subcellulaires différentes, régulent localement les niveaux de nucléotides cycliques et les fonctions cellulaires associées. Cette organisation est fortement perturbée au cours de l'hypertrophie et de l'insuffisance cardiaque à fraction d'éjection réduite (IC), ce qui peut contribuer à la progression de la maladie. Sur le plan clinique, l'inhibition des PDE a été considérée comme une approche prometteuse pour compenser la désensibilisation aux catécholamines qui accompagne l'IC. Bien que des inhibiteurs de la PDE3, tels que la milrinone ou l'énoximone, puissent être utilisés cliniquement pour améliorer la fonction systolique et soulager les symptômes de l'IC aiguë, leur utilisation chronique s'est avérée préjudiciable. D'autres PDE, telles que les PDE1, PDE2, PDE4, PDE5, PDE9 et PDE10, sont apparues comme de nouvelles cibles potentielles pour le traitement de l'IC, chacune ayant un rôle unique dans les voies de signalisation locales des nucléotides cycliques. Dans cette revue, nous décrivons la signalisation de l'AMPc et du GMPc dans les cardiomyocytes et présentons les différentes familles de PDE exprimées dans le cœur ainsi que leurs modifications dans l'hypertrophie cardiaque pathologique et dans l'IC. Nous évaluons également les résultats issus de modèles précliniques ainsi que les données cliniques indiquant l'utilisation d'inhibiteurs ou d'activateurs de PDE spécifiques qui pourraient avoir un potentiel thérapeutique dans l'IC.


Subject(s)
Cardiomegaly , Heart Failure , Phosphodiesterase Inhibitors , Humans , Cardiomegaly/drug therapy , Heart Failure/drug therapy , Animals , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/physiology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Molecular Targeted Therapy/methods , Cyclic GMP/metabolism , Cyclic GMP/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Cyclic AMP/metabolism , Cyclic AMP/physiology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/physiology
6.
Nat Commun ; 15(1): 5867, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997289

ABSTRACT

Purines and their derivatives control intracellular energy homeostasis and nucleotide synthesis, and act as signaling molecules. Here, we combine structural and sequence information to define a purine-binding motif that is present in sensor domains of thousands of bacterial receptors that modulate motility, gene expression, metabolism, and second-messenger turnover. Microcalorimetric titrations of selected sensor domains validate their ability to specifically bind purine derivatives, and evolutionary analyses indicate that purine sensors share a common ancestor with amino-acid receptors. Furthermore, we provide experimental evidence of physiological relevance of purine sensing in a second-messenger signaling system that modulates c-di-GMP levels.


Subject(s)
Bacterial Proteins , Purines , Signal Transduction , Purines/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Bacteria/metabolism , Bacteria/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Second Messenger Systems
7.
Mol Plant Pathol ; 25(7): e13496, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011828

ABSTRACT

The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.


Subject(s)
Bacterial Proteins , Cyclic GMP , Methyltransferases , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/metabolism , Xanthomonas/genetics , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Virulence , Plant Diseases/microbiology , Protein Binding
8.
Nat Commun ; 15(1): 6058, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025877

ABSTRACT

Heart failure causes considerable morbidity and mortality worldwide. Clinically applied drugs for the treatment of heart failure are still severely limited by poor delivery efficiency to the heart and off-target consumption. Inspired by the high heart delivery efficiency of inhaled drugs, we present an inhalable cardiac-targeting peptide (CTP)-modified calcium phosphate (CaP) nanoparticle for the delivery of TP-10, a selective inhibitor of PDE10A. The CTP modification significantly promotes cardiomyocyte and fibroblast targeting during the pathological state of heart failure in male mice. TP-10 is subsequently released from TP-10@CaP-CTP and effectively attenuates cardiac remodelling and improved cardiac function. In view of these results, a low dosage (2.5 mg/kg/2 days) of inhaled medication exerted good therapeutic effects without causing severe lung injury after long-term treatment. In addition, the mechanism underlying the amelioration of heart failure is investigated, and the results reveal that the therapeutic effects of this system on cardiomyocytes and cardiac fibroblasts are mainly mediated through the cAMP/AMPK and cGMP/PKG signalling pathways. By demonstrating the targeting capacity of CTP and verifying the biosafety of inhalable CaP nanoparticles in the lung, this work provides a perspective for exploring myocardium-targeted therapy and presents a promising clinical strategy for the long-term management of heart failure.


Subject(s)
Heart Failure , Myocytes, Cardiac , Nanomedicine , Nanoparticles , Animals , Male , Heart Failure/drug therapy , Heart Failure/prevention & control , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Administration, Inhalation , Nanoparticles/chemistry , Nanomedicine/methods , Peptides/pharmacology , Peptides/administration & dosage , Myocardium/metabolism , Myocardium/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects , Cyclic GMP/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Calcium Phosphates
9.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063203

ABSTRACT

Previous studies have revealed the medicinal and therapeutic effects of Galla chinensis. However, no studies have focused on the antihypertensive effects of G. chinensis. Therefore, we aimed to determine the vasorelaxant and hypotensive effects of G. chinensis 50% ethanolic extract (GCE). To evaluate the vascular relaxing effect of GCE, experiments were conducted using aortic segments dissected from Sprague Dawley rats. GCE showed a vasorelaxant effect via the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, inhibiting Ca2+ channels, and activating K+ channels. The hypotensive effects of GCE were evaluated in spontaneously hypertensive rats (SHRs). The SHRs were randomly divided into a control group and orally administered GCE group (100 or 300 mg/kg). The systolic and diastolic blood pressure decreased significantly by -19.47 ± 4.58% and -31.14 ± 7.66% in the GCE 100 mg/kg group, and -21.64 ± 2.40% and -31.91 ± 5.75% in the GCE 300 mg/kg group at 4 h after administration. Considering its vasorelaxant and hypotensive effects, our results indicate that GCE may be a valuable solution for the control of hypertension. However, further studies on the long-term administration and toxicity of GCE are required.


Subject(s)
Antihypertensive Agents , Blood Pressure , Plant Extracts , Rats, Inbred SHR , Rats, Sprague-Dawley , Vasodilator Agents , Animals , Vasodilator Agents/pharmacology , Rats , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Male , Plant Extracts/pharmacology , Hypertension/drug therapy , Hypertension/physiopathology , Nitric Oxide/metabolism , Vasodilation/drug effects , Cyclic GMP/metabolism , Aorta/drug effects , Drugs, Chinese Herbal , Tannins
10.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000349

ABSTRACT

Lipid emulsions are used as adjuvant drugs to alleviate intractable cardiovascular collapse induced by drug toxicity. We aimed to examine the effect of lipid emulsions on labetalol-induced vasodilation and the underlying mechanism in the isolated rat aorta. We studied the effects of endothelial denudation, NW-nitro-l-arginine methyl ester (l-NAME), calmidazolium, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), and lipid emulsions on labetalol-induced vasodilation. We also evaluated the effects of lipid emulsions on cyclic guanosine monophosphate (cGMP) formation, endothelial nitric oxide synthase (eNOS) phosphorylation, and endothelial calcium levels induced by labetalol. Labetalol-induced vasodilation was higher in endothelium-intact aortas than that in endothelium-denuded aortas. l-NAME, calmidazolium, methylene blue, and ODQ inhibited labetalol-induced vasodilation in endothelium-intact aortas. Lipid emulsions inhibited labetalol-induced vasodilation in endothelium-intact and endothelium-denuded aortas. l-NAME, ODQ, and lipid emulsions inhibited labetalol-induced cGMP formation in endothelium-intact aortas. Lipid emulsions reversed the stimulatory and inhibitory eNOS (Ser1177 and Thr495) phosphorylation induced by labetalol in human umbilical vein endothelial cells and inhibited the labetalol-induced endothelial calcium increase. Moreover, it decreased labetalol concentration. These results suggest that lipid emulsions inhibit vasodilation induced by toxic doses of labetalol, which is mediated by the inhibition of endothelial nitric oxide release and reduction of labetalol concentration.


Subject(s)
Aorta , Cyclic GMP , Emulsions , Labetalol , Nitric Oxide Synthase Type III , Vasodilation , Animals , Vasodilation/drug effects , Rats , Aorta/drug effects , Aorta/metabolism , Labetalol/pharmacology , Male , Nitric Oxide Synthase Type III/metabolism , Cyclic GMP/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Rats, Sprague-Dawley , Humans , Lipids , Phosphorylation/drug effects , Calcium/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism
11.
Nat Commun ; 15(1): 5683, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971825

ABSTRACT

Bacteria within mature biofilms are highly resistant to antibiotics than planktonic cells. Oxygen limitation contributes to antibiotic resistance in mature biofilms. Nitric oxide (NO) induces biofilm dispersal; however, low NO levels stimulate biofilm formation, an underexplored process. Here, we introduce a mechanism of anaerobic biofilm formation by investigating the antibiofilm activity of tyrosol, a component in wine. Tyrosol inhibits E. coli and Pseudomonas aeruginosa biofilm formation by enhancing NO production. YbfA is identified as a target of tyrosol and its downstream targets are sequentially determined. YbfA activates YfeR, which then suppresses the anaerobic regulator FNR. This suppression leads to decreased NO production, elevated bis-(3'-5')-cyclic dimeric GMP levels, and finally stimulates anaerobic biofilm formation in the mature stage. Blocking YbfA with tyrosol treatment renders biofilm cells as susceptible to antibiotics as planktonic cells. Thus, this study presents YbfA as a promising antibiofilm target to address antibiotic resistance posed by biofilm-forming bacteria, with tyrosol acting as an inhibitor.


Subject(s)
Anti-Bacterial Agents , Biofilms , Escherichia coli , Nitric Oxide , Phenylethyl Alcohol , Pseudomonas aeruginosa , Biofilms/drug effects , Biofilms/growth & development , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Nitric Oxide/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/antagonists & inhibitors , Anaerobiosis/drug effects , Microbial Sensitivity Tests , Gene Expression Regulation, Bacterial/drug effects , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/antagonists & inhibitors
12.
RNA Biol ; 21(1): 7-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39016322

ABSTRACT

La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].


Subject(s)
Poly A , Protein Binding , Ribonucleoproteins , SS-B Antigen , Ribonucleoproteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Poly A/metabolism , Poly A/chemistry , Humans , Models, Molecular , Binding Sites , Autoantigens/metabolism , Autoantigens/chemistry , Autoantigens/genetics , Crystallography, X-Ray , Protein Domains , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/chemistry , RNA, Messenger/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics
13.
Chin J Nat Med ; 22(7): 619-631, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39059831

ABSTRACT

Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.


Subject(s)
Cyclic GMP , Cyclic Nucleotide Phosphodiesterases, Type 5 , Diet, High-Fat , Inonotus , Kidney , Nitric Oxide Synthase , Signal Transduction , Animals , Cyclic GMP/metabolism , Male , Signal Transduction/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Kidney/drug effects , Kidney/metabolism , Diet, High-Fat/adverse effects , Rats , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Rats, Sprague-Dawley , Streptozocin , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , Hypoglycemic Agents/pharmacology
14.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063104

ABSTRACT

Acute-phase serum amyloid A (SAA) can disrupt vascular homeostasis and is elevated in subjects with diabetes, cardiovascular disease, and rheumatoid arthritis. Cyclic nitroxides (e.g., Tempo) are a class of piperidines that inhibit oxidative stress and inflammation. This study examined whether 4-methoxy-Tempo (4-MetT) inhibits SAA-mediated vascular and renal dysfunction. Acetylcholine-mediated vascular relaxation and aortic guanosine-3',5'-cyclic monophosphate (cGMP) levels both diminished in the presence of SAA. 4-MetT dose-dependently restored vascular function with corresponding increases in cGMP. Next, male ApoE-deficient mice were administered a vehicle (control, 100 µL PBS) or recombinant SAA (100 µL, 120 µg/mL) ± 4-MetT (at 15 mg/kg body weight via i.p. injection) with the nitroxide administered before (prophylaxis) or after (therapeutic) SAA. Kidney and hearts were harvested at 4 or 16 weeks post SAA administration. Renal inflammation increased 4 weeks after SAA treatment, as judged by the upregulation of IFN-γ and concomitant increases in iNOS, p38MAPK, and matrix metalloproteinase (MMP) activities and increased renal fibrosis (Picrosirius red staining) in the same kidneys. Aortic root lesions assessed at 16 weeks revealed that SAA enhanced lesion size (vs. control; p < 0.05), with plaque presenting with a diffuse fibrous cap (compared to the corresponding aortic root from control and 4-MetT groups). The extent of renal dysfunction and aortic lesion size was largely unchanged in 4-MetT-supplemented mice, although renal fibrosis diminished at 16 weeks, and aortic lesions presented with redistributed collagen networks. These outcomes indicate that SAA stimulates renal dysfunction through promoting the IFN-γ-iNOS-p38MAPK axis, manifesting as renal damage and enhanced atherosclerotic lesions, while supplementation with 4-MetT only affected some of these pathological changes.


Subject(s)
Cyclic N-Oxides , Fibrosis , Kidney , Plaque, Atherosclerotic , Serum Amyloid A Protein , Animals , Mice , Male , Serum Amyloid A Protein/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Cyclic N-Oxides/pharmacology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Collagen/metabolism , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Cyclic GMP/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Oxidative Stress/drug effects , Mice, Inbred C57BL
15.
Methods Mol Biol ; 2814: 177-194, 2024.
Article in English | MEDLINE | ID: mdl-38954206

ABSTRACT

Biochemical assays are described to analyze signal transduction by the second messenger cGMP in Dictyostelium. The methods include enzyme assays to measure the activity and regulation of cGMP synthesizing guanylyl cyclases and cGMP-degrading phosphodiesterases. In addition, several methods are described to quantify cGMP levels. The target of cGMP in Dictyostelium is the large protein GbpC that has multiple domains including a Roc domain, a kinase domain, and a cGMP-stimulated Ras-GEF domain. A cGMP-binding assay is described to detect and quantify GbpC.


Subject(s)
Cyclic GMP , Dictyostelium , Signal Transduction , Dictyostelium/metabolism , Dictyostelium/genetics , Cyclic GMP/metabolism , Guanylate Cyclase/metabolism , Guanylate Cyclase/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
16.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062763

ABSTRACT

Placental protein 13 (PP13) exhibits a plasma concentration that increases gradually during normal gestation, a process that is disrupted in preeclampsia, which is characterized by elevated vascular resistance, reduced utero-placental blood flow, and intrauterine growth restriction. This study investigated PP13's role in vascular tone regulation and its molecular mechanisms. Uterine and subcutaneous arteries, isolated from both pregnant and non-pregnant women, were precontracted with the thromboxane analogue U46619 and exposed to PP13 using pressurized myography. The molecular mechanisms were further investigated, using specific inhibitors for nitric oxide synthase (L-NAME+LNNA at 10-4 M) and guanylate cyclase (ODQ at 10-5 M). The results showed that PP13 induced vasodilation in uterine arteries, but not in subcutaneous arteries. Additionally, PP13 counteracted U46619-induced vasoconstriction, which is particularly pronounced in pregnancy. Further investigation revealed that PP13's mechanism of action is dependent on the activation of the nitric oxide-cGMP pathway. This study provides novel insights into the vasomodulatory effects of PP13 on human uterine arteries, underscoring its potential role in regulating utero-placental blood flow. These findings suggest that PP13 may be a promising candidate for improving utero-placental blood flow in conditions such as preeclampsia. Further research and clinical studies are warranted to validate PP13's efficacy and safety as a therapeutic agent for managing preeclampsia.


Subject(s)
Pre-Eclampsia , Pregnancy Proteins , Uterine Artery , Humans , Female , Pre-Eclampsia/metabolism , Pregnancy , Uterine Artery/metabolism , Uterine Artery/drug effects , Adult , Pregnancy Proteins/metabolism , Pregnancy Proteins/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Vasodilation/drug effects , Nitric Oxide/metabolism , Vasoconstriction/drug effects , Cyclic GMP/metabolism , Placenta/metabolism , Placenta/blood supply , Placenta/drug effects , Galectins
17.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063044

ABSTRACT

Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.


Subject(s)
Cyclic GMP , Mice, Knockout , Natriuretic Peptide, C-Type , Signal Transduction , Animals , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/genetics , Cyclic GMP/metabolism , Mice , Male , Female , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Endothelial Cells/metabolism , Receptors, LDL/metabolism , Receptors, LDL/genetics , Paracrine Communication , Hypertension/metabolism , Hypertension/genetics , Mice, Inbred C57BL , Aorta/metabolism , Aorta/pathology
18.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39052320

ABSTRACT

Biofilm is a group of heterogeneously structured and densely packed bacteria with limited access to nutrients and oxygen. These intrinsic features can allow a mono-species biofilm to diversify into polymorphic subpopulations, determining the overall community's adaptive capability to changing ecological niches. However, the specific biological functions underlying biofilm diversification and fitness adaptation are poorly demonstrated. Here, we launched and monitored the experimental evolution of Pseudomonas aeruginosa biofilms, finding that two divergent molecular trajectories were adopted for adaptation to higher competitive fitness in biofilm formation: one involved hijacking bacteriophage superinfection to aggressively inhibit kin competitors, whereas the other induced a subtle change in cyclic dimeric guanosine monophosphate signaling to gain a positional advantage via enhanced early biofilm adhesion. Bioinformatics analyses implicated that similar evolutionary strategies were prevalent among clinical P. aeruginosa strains, indicative of parallelism between natural and experimental evolution. Divergence in the molecular bases illustrated the adaptive values of genomic plasticity for gaining competitive fitness in biofilm formation. Finally, we demonstrated that these fitness-adaptive mutations reduced bacterial virulence. Our findings revealed how the mutations intrinsically generated from the biofilm environment influence the evolution of P. aeruginosa.


Subject(s)
Biofilms , Pseudomonas aeruginosa , Biofilms/growth & development , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Genetic Fitness , Adaptation, Physiological , Virulence , Mutation , Bacteriophages/genetics , Bacteriophages/physiology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Superinfection/microbiology , Biological Evolution
19.
J Ethnopharmacol ; 334: 118570, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39002824

ABSTRACT

BACKGROUND: The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS: The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS: Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION: Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Cyclic GMP , Drugs, Chinese Herbal , Intestinal Mucosa , Mice, Inbred C57BL , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Cyclic GMP/metabolism , Signal Transduction/drug effects , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Cyclic GMP-Dependent Protein Kinases/metabolism , Humans , Disease Models, Animal , Soluble Guanylyl Cyclase/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Colon/drug effects , Colon/metabolism , Colon/pathology , Intestinal Barrier Function
20.
Curr Opin Microbiol ; 80: 102516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059031

ABSTRACT

Members of the antibiotic-producing bacterial genus Streptomyces undergo a complex developmental life cycle that culminates in the production of spores. Central to control of this cell differentiation process is signaling through the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). So far, three proteins that are directly controlled by c-di-GMP in Streptomyces have been functionally and structurally characterized: the key developmental regulators BldD and σWhiG, and the glycogen-degrading enzyme GlgX. c-di-GMP signals through BldD and σWhiG, respectively, to control the two most dramatic transitions of the Streptomyces life cycle, the formation of the reproductive aerial hyphae and their differentiation into spore chains. Later in development, c-di-GMP activates GlgX-mediated degradation of glycogen, releasing stored carbon for spore maturation.


Subject(s)
Bacterial Proteins , Cyclic GMP , Gene Expression Regulation, Bacterial , Spores, Bacterial , Streptomyces , Streptomyces/metabolism , Streptomyces/growth & development , Streptomyces/genetics , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Spores, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL