Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 773
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39337670

ABSTRACT

Gestational diabetes mellitus (GDM) is a common condition during pregnancy. The prevalence of GDM is continuously increasing worldwide. Due to accessible diagnostic methods and a clear understanding of risk factors, GDM can be effectively diagnosed and managed. Galectins may influence immunomodulatory and inflammatory processes. This study examines the expression of galectin-7 in the placentas of women with gestational diabetes (GDM), compares it to its expression in healthy pregnancies, and evaluates the associated clinical outcomes. The placentas of 40 healthy women and 40 GDM placentas were included in the cohort. The expression level of galecin-7 was measured in the syncytiotrophoblast (SCT) and in the decidua of the placenta by immunohistochemistry and double immunofluorescence staining. The evaluation was performed by an immunoreactivity score (IRS). The study results show an increased expression of galectin-7 in the SCT and the decidua of GDM placentas as compared to the placentas of the control group. Elevated levels of galectin-7 were observed in both the nucleus and the cytoplasm. This study investigated the hypothesis that galectins are involved in pathophysiological processes of gestational diabetes. Statistical analysis of gene expression patterns confirmed that galectin-7 is indeed upregulated in GDM placentas. Further studies are needed to show the correlation of galectin-7 and the development and maintenance of gestational diabetes mellitus.


Subject(s)
Diabetes, Gestational , Galectins , Placenta , Humans , Diabetes, Gestational/metabolism , Diabetes, Gestational/genetics , Female , Pregnancy , Galectins/metabolism , Galectins/genetics , Placenta/metabolism , Adult , Trophoblasts/metabolism , Decidua/metabolism , Decidua/pathology , Case-Control Studies
2.
Nat Commun ; 15(1): 8379, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333481

ABSTRACT

Scar tissue formation is a hallmark of wound repair in adults and can chronically affect tissue architecture and function. To understand the general phenomena, we sought to explore scar-driven imbalance in tissue homeostasis caused by a common, and standardized surgical procedure, the uterine scar due to cesarean surgery. Deep uterine scar is associated with a rapidly increasing condition in pregnant women, placenta accreta spectrum (PAS), characterized by aggressive trophoblast invasion into the uterus, frequently necessitating hysterectomy at parturition. We created a model of uterine scar, recapitulating PAS-like invasive phenotype, showing that scar matrix activates mechanosensitive ion channel, Piezo1, through glycolysis-fueled cellular contraction. Piezo1 activation increases intracellular calcium activity and Protein kinase C activation, leading to NF-κB nuclear translocation, and MafG stabilization. This inflammatory transformation of decidua leads to production of IL-8 and G-CSF, chemotactically recruiting invading trophoblasts towards scar, initiating PAS. Our study demonstrates aberrant mechanics of scar disturbs stroma-epithelia homeostasis in placentation, with implications in cancer dissemination.


Subject(s)
Cicatrix , Inflammation , Ion Channels , Placenta Accreta , Trophoblasts , Female , Pregnancy , Humans , Placenta Accreta/metabolism , Placenta Accreta/pathology , Cicatrix/metabolism , Cicatrix/pathology , Ion Channels/metabolism , Ion Channels/genetics , Animals , Inflammation/metabolism , Inflammation/pathology , Trophoblasts/metabolism , Trophoblasts/pathology , Decidua/pathology , Decidua/metabolism , Mice , NF-kappa B/metabolism , Cesarean Section/adverse effects , Protein Kinase C/metabolism , Protein Kinase C/genetics , Interleukin-8/metabolism , Uterus/pathology , Uterus/metabolism
3.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090270

ABSTRACT

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Subject(s)
Decidua , Fetal Growth Retardation , Leptin , Placenta , Signal Transduction , Animals , Female , Mice , Pregnancy , Decidua/metabolism , Decidua/pathology , Diet, High-Fat/adverse effects , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Leptin/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/pathology , Placenta/metabolism , Progesterone/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics
4.
Am J Dermatopathol ; 46(10): 704-711, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39008463

ABSTRACT

ABSTRACT: Cutaneous deciduosis is an extremely rare condition that clinically presents as a nodular lesion in the skin as a scar or neoplasm. Histologically, this may pose a diagnostic challenge simulating malignant epithelioid neoplasms including sarcoma. Histologically, a nodular growth pattern of large monomorphic epithelioid cells is observed. The epithelioid cells in deciduosis can appear atypical with considerable nuclear pleomorphism, mimicking a malignancy. These features can be misinterpreted as a primary cutaneous or metastatic malignancy by dermatopathologists who are not familiar with gynecologic pathology. Failure to correctly diagnose this condition may result in unnecessary diagnostic studies for the patient. In this article, we report a case of cutaneous deciduosis in a 35-year-old woman with a cesarean scar. Histological examination revealed nodular proliferation of large epithelioid cells with pale eosinophilic cytoplasm and large nuclei with prominent nucleoli. Compressed atrophic slit-like glands resembling endometrial glands were present in some areas. Histopathological features of decidual cells, along with appropriate immunohistochemical studies, help establish the diagnosis and rule out other neoplastic mimics of deciduosis.


Subject(s)
Skin Neoplasms , Humans , Female , Adult , Diagnosis, Differential , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Skin Diseases/pathology , Skin Diseases/diagnosis , Cicatrix/pathology , Immunohistochemistry , Cesarean Section , Epithelioid Cells/pathology , Decidua/pathology
5.
Reproduction ; 168(3)2024 09 01.
Article in English | MEDLINE | ID: mdl-38995736

ABSTRACT

In Brief: Advanced maternal age is associated with a higher rate of pregnancy complications that are unrelated to karyotypic abnormalities of the oocyte. This study shows that the murine uterine stroma undergoes profound epigenetic changes affecting active and repressive histone modification profiles that are associated with impaired endometrial functionality and underpin the decline in reproductive performance of aged females. Abstract: Decidualization describes the transformation of the uterine stroma in response to an implanting embryo, a process critical for supporting the development of the early embryo, for ensuring normal placentation and ultimately for a healthy reproductive outcome. Maternal age has been found to impede the progression of decidualization, heightening the risk of reproductive problems. Here, we set out to comprehensively characterize this deficit by pursuing transcriptomic and epigenomic profiling approaches specifically in the uterine stromal cell (UtSC) compartment of young and aged female mice. We find that UtSCs from aged females are globally far less responsive to the decidualization stimulus triggered by exposure to the steroid hormones estrogen and progesterone. Despite an overall transcriptional hyperactivation of genes that are differentially expressed as a function of maternal age, the hormonally regulated genes specifically fail to be activated in aged UtSCs. Moreover, even in their unstimulated 'ground' state, UtSCs from aged females are epigenetically distinct, as determined by genomic enrichment profiling for the active and repressive histone marks H3K4me3 and H3K9me3, respectively. We find that many hormone-inducible genes exhibit a profound lack of promoter-associated H3K4me3 in aged UtSCs, implying that a significant enrichment of active histone marks prior to gene stimulation is required to enable the elicitation of a rapid transcriptional response. With this combination of criteria, our data highlight specific deficits in epigenetic marking and gene expression of ion channels and vascular markers. These results point to fundamental defects in muscle-related and perivascular niche functions of the uterine stroma with advanced maternal age.


Subject(s)
Aging , Decidua , Epigenesis, Genetic , Stromal Cells , Female , Animals , Mice , Stromal Cells/metabolism , Decidua/metabolism , Decidua/pathology , Histone Code , Histones/metabolism , Uterus/metabolism , Uterus/pathology , Pregnancy , Reproduction , Mice, Inbred C57BL , Maternal Age
6.
Cell Mol Life Sci ; 81(1): 324, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080028

ABSTRACT

Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.


Subject(s)
AMP-Activated Protein Kinases , Endometrium , Polycystic Ovary Syndrome , Sirtuin 1 , Stromal Cells , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Endometrium/metabolism , Endometrium/pathology , Endometrium/drug effects , AMP-Activated Protein Kinases/metabolism , Adult , Hyperandrogenism/metabolism , Hyperandrogenism/pathology , Decidua/metabolism , Decidua/pathology , Testosterone/metabolism , Testosterone/pharmacology , Androgens/pharmacology , Androgens/metabolism , Progesterone/metabolism , Progesterone/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Signal Transduction/drug effects
7.
FASEB J ; 38(14): e23833, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012313

ABSTRACT

Recurrent spontaneous abortion (RSA) is a common pregnancy-related disorder. Cbl proto-oncogene like 1 (CBLL1) is an E3 ubiquitin ligase, which has been reported to vary with the menstrual cycle in the endometrium. However, whether CBLL1 is involved in the occurrence and development of RSA remains unclear. This study aimed to investigate the effects of CBLL1 on RSA. We analyzed the expression of CBLL1 in the decidua of RSA patients, as well as its functional effects on cellular senescence, oxidative stress, and proliferation of human endometrial stromal cells (HESCs). RNA sequencing was employed to identify a key downstream target gene regulated by CBLL1. We found that CBLL1 was upregulated in the decidua of RSA patients. Additionally, overexpression of CBLL1 promoted HESC senescence, increased oxidative stress levels, and inhibited proliferation. Phosphatase and tensin homolog located on chromosome 10 (PTEN) was identified as one of the important downstream target genes of CBLL1. In vivo experiments demonstrated that CBLL1 overexpression in the endometrium caused higher embryo absorption rate in mice. Consequently, elevated CBLL1 expression is a potential cause of RSA, representing a novel therapeutic target for RSA.


Subject(s)
Abortion, Habitual , Cellular Senescence , Endometrium , PTEN Phosphohydrolase , Stromal Cells , Adult , Animals , Female , Humans , Mice , Pregnancy , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Abortion, Habitual/pathology , Cell Proliferation , Decidua/metabolism , Decidua/pathology , Endometrium/metabolism , Endometrium/pathology , Oxidative Stress , Proto-Oncogene Mas , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Stromal Cells/metabolism
8.
J Reprod Immunol ; 164: 104270, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878627

ABSTRACT

Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins and are important for placenta formation during early pregnancy. Recurrent pregnancy loss (RPL) is associated with abnormalities in endometrial extracellular matrix remodeling. This study aimed to elucidate the roles of MMP2 and MMP9 in RPL pathogenesis. In total, 295 women with a history of RPL and 101 controls were included in this genetic study. Genotype analysis was performed using polymerase chain reaction (PCR) restriction fragment length polymorphisms. For proteolytic analysis, decidua and villi were collected from 10 RPL-miscarried women with normal fetal chromosomes (NC) and 19 women with fetal chromosome aberrations (AC). The expression of MMP2 and MMP9 in the decidua and villi was measured by IHC and ELISA. All samples were collected after obtaining informed consent. There were no statistically significant differences in MMP2-735 C/T and MMP9-1562 C/T frequencies between women with RPL and the controls. There was no significant difference in MMP2 expression levels in the villi; however, MMP9 expression was significantly higher in normal fetal chromosomes. In the decidua, the expression of MMP2 in the NC group was significantly lower, and MMP9 in the NC group was significantly higher than in the AC group. Although no differences in MMP2-735 C/T and MMP9-1562 C/T gene polymorphisms were observed in the present study, it is suggested that differences at the protein level are involved in the pathogenesis of RPL since MMP expression is not only regulated by genes but also by local inflammation and various inductive signals.


Subject(s)
Abortion, Habitual , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Humans , Female , Abortion, Habitual/genetics , Pregnancy , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Adult , Polymorphism, Single Nucleotide , Decidua/pathology , Decidua/immunology , Decidua/metabolism , Genotype , Genetic Predisposition to Disease
9.
Pediatr Radiol ; 54(9): 1549-1552, 2024 08.
Article in English | MEDLINE | ID: mdl-38787524

ABSTRACT

Decidual cast is a little-known entity characterized by sloughing of the endometrium in several large pieces or in one cylindrical or membranous piece retaining the shape of the uterine cavity. Accounts of the diagnosis are sporadic and have not previously appeared in the pediatric imaging literature. We describe a case of a post-menarchal adolescent girl presenting with abnormal uterine bleeding, severe dysmenorrhea, and imaging features of genital tract obstruction, the cause of which was found to be a large decidual cast during examination under anesthesia. While rare, awareness of this phenomenon should be useful to pediatric imagers as the combination of bleeding and obstructive symptoms produces a confusing picture that may lead to a protracted clinical and imaging course.


Subject(s)
Decidua , Humans , Female , Adolescent , Decidua/diagnostic imaging , Decidua/pathology , Diagnosis, Differential , Uterine Hemorrhage/diagnostic imaging , Uterine Hemorrhage/etiology , Ultrasonography/methods
10.
Reproduction ; 168(3)2024 09 01.
Article in English | MEDLINE | ID: mdl-38781072

ABSTRACT

In brief: Failure to induce mesenchymal-epithelial transition (MET) during stromal cell decidualization can lead to consequences such as impaired fertility in patients with endometriosis. METTL3-mediated m6A modification plays an important role in attenuating MET and defective decidualization of endometrial stromal cells and contributes to the development of reduced endometrial receptivity in endometriosis. Abstract: Mesenchymal-epithelial transition (MET)-mediated endometrial decidualization is pivotal for achieving endometrial receptivity and successful pregnancy. We observed blockade of MET in the eutopic secretory endometrium of patients with endometriosis, but the underlying mechanism is unknown. In this study, real-time PCR was used to detect PRL and IGFBP1 expression, whereas western blotting was used to detect the expression of MET markers and METTL3. Phalloidin staining was used to identify changes in cell morphology. M6A levels were quantified using a colorimetric method and m6A dot blots, and functional analysis was performed using spheroid adhesion assays. We first found that increased E-cadherin expression was accompanied by decreased vimentin and Slug expression in the eutopic secretory endometrium of individuals with endometriosis. We also detected a significant increase in both the m6A level and the expression of the related methyltransferase METTL3. Finally, METTL3 expression was negatively correlated with PRL, IGFBP1, and MET markers expression. Collectively, our findings suggest that METTL3 mediates m6A modification, thereby inhibiting MET formation within the eutopic secretory endometrium of patients with endometriosis. Increased METTL3-mediated m6A modification plays a crucial role in attenuating MET formation and decidualization impairment in endometrial stromal cells, ultimately contributing to compromised endometrial receptivity in individuals with endometriosis. These insights could lead to the identification of potential therapeutic targets for improving both endometrial receptivity and pregnancy rate among individuals affected by endometriosis.


Subject(s)
Endometriosis , Endometrium , Epithelial-Mesenchymal Transition , Methyltransferases , Stromal Cells , Female , Humans , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Endometrium/metabolism , Endometrium/pathology , Adult , Methyltransferases/metabolism , Methyltransferases/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Decidua/metabolism , Decidua/pathology , Adenosine/metabolism , Adenosine/analogs & derivatives , Cadherins/metabolism , Cadherins/genetics
11.
Placenta ; 153: 1-21, 2024 08.
Article in English | MEDLINE | ID: mdl-38810540

ABSTRACT

INTRODUCTION: Studies have shown that EMT (epithelial-mesenchymal transition) and energy metabolism influence each other, and it is unclear whether the trophoblast energy metabolism phenotype is dominated by glycolysis or mitochondrial respiration, and the relationship between trophoblast energy metabolism and EMT is still unclear. METHODS: Exosomes were isolated from the DSC of URSA patients and their miRNA profile was characterized by miRNA sequencing. Wound healing assays and transwell assays were used to assess the invasion and migration ability of trophoblasts. Mitochondrial stress and glycolysis stress test were used to evaluate energy metabolism phenotype of trophoblast. Luciferase reporter assays, qRT-PCR and WB were conducted to uncover the underlying mechanism. Finally, animal experiments were employed to explore the effect of DSC-exos on embryo absorption in mice. RESULTS: Our results showed that URSA-DSC-exos suppressed trophoblast EMT to reduce their migration and invasion, miR-22-5p_R-1 was the most upregulated miRNAs. URSA-DSC-exos can suppress trophoblast MGS (metabolic switch from mitochondrial respiration to glycolysis) and inhibit trophoblast migration and invasion by transferring miR-22-5p_R-1. Mechanistically, miR-22-5p_R-1 suppress trophoblast MGS and inhibit trophoblast EMT by directly suppressing PDK4 expression at the post-transcriptional level. Furthermore, in vivo experiment suggested that URSA-DSC-exos aggravated embryo absorption in mice. Clinically, PDK4 and EMT molecule were aberrant in villous of URSA patients, and negative correlations were found between miR-22-5p_R-1 and PDK4. DISCUSSION: Our findings indicated that URSA-DSC-exos induced MGS obstacle playing an important role in intercellular communication between trophoblast and DSC, illuminating a novel mechanism in DSC regulation of trophoblasts and their role in URSA.


Subject(s)
Abortion, Habitual , Exosomes , Glycolysis , MicroRNAs , Mitochondria , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Trophoblasts , Female , MicroRNAs/metabolism , MicroRNAs/genetics , Trophoblasts/metabolism , Humans , Pregnancy , Exosomes/metabolism , Animals , Mice , Mitochondria/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Epithelial-Mesenchymal Transition , Adult , Decidua/metabolism , Decidua/pathology
12.
J Cell Physiol ; 239(8): e31292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38704705

ABSTRACT

Spontaneous abortion is the most common complication in early pregnancy, the exact etiology of most cases cannot be determined. Emerging studies suggest that mutations in ciliary genes may be associated with progression of pregnancy loss. However, the involvement of primary cilia on spontaneous abortion and the underlying molecular mechanisms remains poorly understood. We observed the number and length of primary cilia were significantly decreased in decidua of spontaneous abortion in human and lipopolysaccharide (LPS)-induced abortion mice model, accompanied with increased expression of proinflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. The length of primary cilia in human endometrial stromal cell (hESC) was significantly shortened after TNF-α treatment. Knocking down intraflagellar transport 88 (IFT88), involved in cilia formation and maintenance, promoted the expression of TNF-α. There was a reverse regulatory relationship between cilia shortening and TNF-α expression. Further research found that shortened cilia impair decidualization in hESC through transforming growth factor (TGF)-ß/SMAD2/3 signaling. Primary cilia were impaired in decidua tissue of spontaneous abortion, which might be mainly caused by inflammatory injury. Primary cilia abnormalities resulted in dysregulation of TGF-ß/SMAD2/3 signaling transduction and decidualization impairment, which led to spontaneous abortion.


Subject(s)
Abortion, Spontaneous , Cilia , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Female , Cilia/metabolism , Cilia/pathology , Abortion, Spontaneous/metabolism , Abortion, Spontaneous/pathology , Humans , Smad2 Protein/metabolism , Smad2 Protein/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Animals , Smad3 Protein/metabolism , Smad3 Protein/genetics , Pregnancy , Mice , Decidua/metabolism , Decidua/pathology , Tumor Necrosis Factor-alpha/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology
13.
FASEB J ; 38(9): e23622, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703029

ABSTRACT

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Subject(s)
Endometriosis , RNA, Long Noncoding , RNA-Binding Proteins , Adult , Female , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Decidua/metabolism , Decidua/pathology , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Infertility, Female/metabolism , Infertility, Female/genetics , Infertility, Female/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Stromal Cells/metabolism , Smad Proteins , Young Adult
14.
J Reprod Immunol ; 164: 104258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810587

ABSTRACT

The pathogenesis of preeclampsia (PE) has not been elucidated, but immune imbalance is known to be one of the main pathogeneses. Dysfunction of decidual macrophages can lead to PE, and the PD-1/PD-L1 signaling pathway is associated with macrophage polarization. However, the relationship between the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization and the onset of PE has not been fully elucidated. In this study, we analyzed the expression of CD68, iNOS, CD206, PD-1 and PD-L1 and the coexpression of CD68+PD-1+ and CD68+PD-L1+ in the decidual tissue of PE patients (n= 18) and healthy pregnant women (n=20). We found that CD68 and iNOS expression was increased in the decidua of PE patients (P < 0.001) and that CD206, PD-1 and PD-L1 expression and CD68+PD-1+ and CD68+PD-L1+ coexpression were decreased (P < 0.001). To assess the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization, we added an anti-PD-1 mAb (pembrolizumab) or an anti-PD-L1 mAb (durvalumab) during THP-1 differentiation into M1 macrophages. Then, we detected the polarization of CD68+CD80+ macrophages and the expression of iNOS. To examine the effect of macrophage polarization on the invasion ability of trophoblast cells, macrophages were cocultured with HTR8/SVneo cells, and the invasion ability of HTR8/SVneo cells was detected via transwell assays. We found that CD68+CD80+ macrophage polarization was enhanced (P<0.05) and that iNOS expression was greater (P<0.01) in the pembrolizumab group. In the durvalumab group, CD68+CD80+ macrophage polarization and iNOS expression were also increased (P<0.05 and P<0.001). Compared with that in the untreated group, the aggressiveness of HTR8/SVneo cells was decreased in both the pembrolizumab group (P < 0.01) and the durvalumab group (P < 0.001). These findings indicate that the PD-1/PD-L1 signaling pathway may play an important role in the pathogenesis of PE by influencing macrophage polarization and reducing the invasion ability of trophoblasts.


Subject(s)
B7-H1 Antigen , Decidua , Macrophages , Pre-Eclampsia , Programmed Cell Death 1 Receptor , Signal Transduction , Humans , Female , Pre-Eclampsia/immunology , Pre-Eclampsia/pathology , Pre-Eclampsia/metabolism , Pregnancy , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Decidua/immunology , Decidua/pathology , Decidua/metabolism , Macrophages/immunology , Macrophages/metabolism , Signal Transduction/immunology , Adult , Antigens, CD/metabolism , Nitric Oxide Synthase Type II/metabolism , Macrophage Activation/immunology , THP-1 Cells
15.
Cell Mol Life Sci ; 81(1): 237, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795132

ABSTRACT

Ovarian endometriosis is a common gynecological disease, and one of its most significant symptoms is infertility. In patients with endometriosis, defects in endometrial decidualization lead to impaired endometrial receptivity and embryo implantation, thus affecting early pregnancy and women's desire to have children. However, the mechanisms underlying the development of endometriosis and its associated defective decidualization are unclear. We find that NEK2 expression is increased in the ectopic and eutopic endometrium of patients with endometriosis. Meanwhile, NEK2 interacts with FOXO1 and phosphorylates FOXO1 at Ser184, inhibiting the stability of the FOXO1 protein. Importantly, NEK2-mediated phosphorylation of FOXO1 at Ser184 promotes cell proliferation, migration, invasion and impairs decidualization. Furthermore, INH1, an inhibitor of NEK2, inhibits the growth of ectopic lesions in mouse models of endometriosis and promotes endometrial decidualization in mouse models of artificially induced decidualization. Taken together, these findings indicate that NEK2 regulates the development of endometriosis and associated disorders of decidualization through the phosphorylation of FOXO1, providing a new therapeutic target for its treatment.


Subject(s)
Cell Proliferation , Endometriosis , Endometrium , Forkhead Box Protein O1 , NIMA-Related Kinases , Female , Endometriosis/metabolism , Endometriosis/pathology , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Humans , Animals , Phosphorylation , Mice , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Endometrium/metabolism , Endometrium/pathology , Cell Movement , Decidua/metabolism , Decidua/pathology , Adult , Disease Models, Animal
16.
Reprod Sci ; 31(7): 1983-2000, 2024 07.
Article in English | MEDLINE | ID: mdl-38424407

ABSTRACT

BACKGROUND: Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS: We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS: In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1ß and TGF-ß1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS: Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.


Subject(s)
Abortion, Habitual , Autophagy , Cyclic AMP Response Element-Binding Protein , Decidua , Female , Autophagy/physiology , Humans , Pregnancy , Decidua/metabolism , Decidua/pathology , Abortion, Habitual/metabolism , Abortion, Habitual/pathology , Cyclic AMP Response Element-Binding Protein/metabolism , Animals , Adult , Mice , Stromal Cells/metabolism , Maternal-Fetal Relations/physiology , Maternal-Fetal Exchange/physiology , Endometrium/metabolism , Endometrium/pathology , Cyclic AMP Response Element-Binding Protein A
17.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38314577

ABSTRACT

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Subject(s)
Decidua , Galectins , Macrophages , Pre-Eclampsia , Vascular Remodeling , Pre-Eclampsia/metabolism , Pre-Eclampsia/immunology , Pregnancy , Female , Animals , Galectins/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Decidua/metabolism , Decidua/pathology , Mice, Knockout , Uterus/metabolism , Uterus/blood supply , Disease Models, Animal , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Retrospective Studies , Mice, Inbred C57BL , CD11 Antigens
18.
Pediatr Dev Pathol ; 27(3): 270-274, 2024.
Article in English | MEDLINE | ID: mdl-38221679

ABSTRACT

A 43-year-old female presented with blood loss and persistent abdominal pain at 14 weeks of gestation. Ultrasound examination and subsequent magnetic resonance imaging (MRI) revealed bilateral multicystic uterine adnexa. Exploratory laparotomy was performed at 17 weeks of gestation and bilateral serous ovarian adenocarcinoma FIGO stage IIIC was diagnosed. Complete cytoreductive surgery (CRS) was not feasible at that moment. Nine days after the exploratory laparotomy, immature rupture of membranes and contractions occurred and she delivered a premature boy after 19 weeks of gestation. Pathological examination of the placenta revealed that her ovarian cancer metastasized to the membranes. We describe the first case of ovarian cancer metastasized to the decidua of the placental membranes with histological, immunohistochemical, and molecular confirmation. This case highlights the importance of conscientious evaluation of placenta and membranes in pregnant women with ovarian cancer.


Subject(s)
Ovarian Neoplasms , Pregnancy Complications, Neoplastic , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/secondary , Pregnancy , Adult , Pregnancy Complications, Neoplastic/pathology , Pregnancy Complications, Neoplastic/diagnosis , Decidua/pathology , Cystadenocarcinoma, Serous/secondary , Cystadenocarcinoma, Serous/diagnosis , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/metabolism , Placenta/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis
19.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 04.
Article in English | MEDLINE | ID: mdl-38296740

ABSTRACT

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Subject(s)
Abruptio Placentae , Placenta Accreta , Placenta Diseases , Pregnancy , Female , Infant, Newborn , Humans , Placenta Accreta/therapy , Endothelial Cells , Placenta/pathology , Placenta Diseases/pathology , Intercellular Signaling Peptides and Proteins , Decidua/pathology , Endothelium/pathology
20.
Pac Symp Biocomput ; 29: 549-563, 2024.
Article in English | MEDLINE | ID: mdl-38160306

ABSTRACT

BACKGROUND: Existing proposed pathogenesis for preeclampsia (PE) was only applied for early onset subtype and did not consider pre-pregnancy and competing risks. We aimed to decipher PE subtypes by identifying related transcriptome that represents endometrial maturation and histologic chorioamnionitis. METHODS: We utilized eight arrays of mRNA expression for discovery (n=289), and other eight arrays for validation (n=352). Differentially expressed genes (DEGs) were overlapped between those of: (1) healthy samples from endometrium, decidua, and placenta, and placenta samples under histologic chorioamnionitis; and (2) placenta samples for each of the subtypes. They were all possible combinations based on four axes: (1) pregnancy-induced hypertension; (2) placental dysfunction-related diseases (e.g., fetal growth restriction [FGR]); (3) onset; and (4) severity. RESULTS: The DEGs of endometrium at late-secretory phase, but none of decidua, significantly overlapped with those of any subtypes with: (1) early onset (p-values ≤0.008); (2) severe hypertension and proteinuria (p-values ≤0.042); or (3) chronic hypertension and/or severe PE with FGR (p-values ≤0.042). Although sharing the same subtypes whose DEGs with which significantly overlap, the gene regulation was mostly counter-expressed in placenta under chorioamnionitis (n=13/18, 72.22%; odds ratio [OR] upper bounds ≤0.21) but co-expressed in late-secretory endometrium (n=3/9, 66.67%; OR lower bounds ≥1.17). Neither the placental DEGs at first-nor second-trimester under normotensive pregnancy significantly overlapped with those under late-onset, severe PE without FGR. CONCLUSIONS: We identified the transcriptome of endometrial maturation in placental dysfunction that distinguished early- and late-onset PE, and indicated chorioamnionitis as a PE competing risk. This study implied a feasibility to develop and validate the pathogenesis models that include pre-pregnancy and competing risks to decide if it is needed to collect prospective data for PE starting from pre-pregnancy including chorioamnionitis information.


Subject(s)
Chorioamnionitis , Hypertension , Pre-Eclampsia , Pregnancy , Female , Humans , Placenta/metabolism , Placenta/pathology , Transcriptome , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Chorioamnionitis/genetics , Chorioamnionitis/metabolism , Chorioamnionitis/pathology , Prospective Studies , Computational Biology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Decidua/metabolism , Decidua/pathology
SELECTION OF CITATIONS
SEARCH DETAIL