Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.038
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000342

ABSTRACT

Post-burn hypertrophic scars often exhibit abnormal pigmentation. Exosomes play important roles in maintaining normal physiological homeostasis and in the pathological development of diseases. This study investigated the effects of the exosomes derived from hypertrophic scar fibroblasts (HTSFs) on melanocytes, which are pigment-producing cells. Normal fibroblasts (NFs) and HTSFs were isolated and cultured from normal skin and hypertrophic scar (HTS) tissue. Both the NF- and HTSF-exosomes were isolated from a cell culture medium and purified using a column-based technique. The normal human epidermal melanocytes were treated with both exosomes at a concentration of 100 µg/mL at different times. The cell proliferation, melanin content in the medium, apoptotic factors, transcription factors, melanin synthesis enzymes, signaling, signal transduction pathways, and activators of transcription factors (STAT) 1, 3, 5, and 6 were investigated. Compared with the Dulbecco's phosphate-buffered saline (DPBS)-treated controls and NF-exosomes, the HTSF-exosomes decreased the melanocyte proliferation and melanin secretion. The molecular patterns of apoptosis, proliferation, melanin synthesis, Smad and non-Smad signaling, and STATs were altered by the treatment with the HTSF-exosomes. No significant differences were observed between the DPBS-treated control and NF-exosome-treated cells. HTSF-derived exosomes may play a role in the pathological epidermal hypopigmentation observed in patients with HTS.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , Exosomes , Fibroblasts , Melanins , Melanocytes , Signal Transduction , Humans , Exosomes/metabolism , Melanocytes/metabolism , Fibroblasts/metabolism , Melanins/biosynthesis , Melanins/metabolism , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Apoptosis , Epidermis/metabolism , Epidermis/pathology , Cells, Cultured , Melanogenesis
2.
Methods Mol Biol ; 2805: 187-201, 2024.
Article in English | MEDLINE | ID: mdl-39008183

ABSTRACT

Epidermal tissues are among the most striking examples of planar polarity. Insect bristles, fish scales, and mammalian fur are all uniformly oriented along an animal's body axis. The collective alignment of epidermal structures provides a valuable system to interrogate the signaling mechanisms that coordinate cellular behaviors at both local and tissue-levels. Here, we provide methods to analyze the planar organization of hair follicles within the mouse epidermis. Hair follicles are specified and bud into the underlying dermis during embryonic development. Shortly after, follicle cells dynamically rearrange to orient each follicle toward the anterior of the animal. When directional signaling is disrupted, hair follicles become misoriented. In this chapter, we describe how to create a spatial map of hair follicle orientations to reveal tissue-scale patterns in both embryonic and postnatal skin. Additionally, we provide a live imaging protocol that can be used to monitor cell movements in embryonic skin explants to reveal the cellular behaviors that polarize the hair follicle itself.


Subject(s)
Cell Polarity , Epidermis , Hair Follicle , Animals , Mice , Hair Follicle/cytology , Hair Follicle/embryology , Cell Polarity/physiology , Epidermis/embryology , Epidermis/metabolism , Epidermal Cells/cytology , Cell Movement
3.
Exp Dermatol ; 33(7): e15138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005203

ABSTRACT

Seborrheic keratosis (SK) is a common benign tumour, often associated with hyperpigmentation. To investigate the mechanism of melanin accumulation in SK, we have conducted comprehensive gene expression and histological analyses. We obtained five pairs of skin samples, including non-lesional and SK samples, from the backs of three male Japanese participants aged 40-59 years. To examine melanocytes and keratinocytes in SK, three pairs of skin samples were separated by laser capture microdissection into the basal layer and the other layer in the epidermis. We performed a comprehensive gene expression analysis to identify differentially expressed genes between non-lesional and SK skin, followed by gene ontology and pathway analysis. We found abnormal morphogenesis and cell proliferation in the basal layer, along with increased immune response and impaired cell differentiation and metabolism in the other layer of SK. We focused on cell proliferation and differentiation, as these are directly associated with melanin accumulation. Immunohistochemical analyses of Ki67, keratin 10, and keratin 14 demonstrated the decreases in the proliferation and early differentiation of the epidermis. Contrarily, no significant changes were observed in terminal differentiation markers, filaggrin and loricrin. Although the number of melanocytes was higher in SK than in non-lesional skin, melanogenic activity showed no difference. These results indicated that melanin accumulation in SK is caused by delayed melanin excretion due to reduced turnover around the basal and spinous layers of the epidermis and melanin production due to an increased number of melanocytes. Our findings provide new insights for therapeutic approaches in SK.


Subject(s)
Cell Differentiation , Cell Proliferation , Filaggrin Proteins , Keratinocytes , Keratosis, Seborrheic , Melanins , Melanocytes , Humans , Melanocytes/metabolism , Melanocytes/pathology , Keratosis, Seborrheic/metabolism , Keratosis, Seborrheic/pathology , Male , Melanins/metabolism , Middle Aged , Keratinocytes/metabolism , Adult , Epidermis/metabolism , Epidermis/pathology , Membrane Proteins
4.
Skin Res Technol ; 30(7): e13848, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978226

ABSTRACT

BACKGROUND: Plant polysaccharides have various biological activities. However, few studies have been conducted on the skin barrier of Prinsepia utilis Royle polysaccharide extract (PURP). MATERIALS AND METHODS: The proportions of polysaccharides, monosaccharides and proteins were determined by extracting polysaccharides from fruit meal using water. The healing rate was measured by cell scratch assays. SDS-damaged reconstructed human epidermal models, an acetone-ether-induced mouse model and an IL-4-induced cellular inflammation model were used to detect the effects of polysaccharides on the phenotype, HA, TEWL, and TEER, with further characterizations performed using QRT-PCR, Western blotting, immunofluorescence (IF) assays. RESULTS: PURP contained 35.73% polysaccharides and 11.1% proteins. PURP promoted cell migration and increased skin thickness in a reconstructed human epidermis model. The TEWL significantly decreased, and the HA content significantly increased. PURP significantly increased the TEER and decreased the permeability of the SDS-damaged reconstructed human epidermis model. Claudin-3, Claudin-4, and Claudin-5 were significantly upregulated. IF and Western blot analysis revealed that the Claudin-4 level significantly increased after treatment with PURP. Claudin-1, Claudin-3, Claudin-4, and Claudin-5 gene expression and IF and immunohistochemical staining were significantly increased in mice treated with acetone-ether. PURP promoted the expression of Claudin-1, Claudin-3, Claudin-4, and Claudin-5 after treatment with 100 ng/mL IL-4. PURP also downregulated the expression of NO, IL6, TNFα and NFκB in Raw 264.7 cells and in a mouse model. CONCLUSION: We hypothesize that PURP may repair the skin barrier by promoting the expression of the claudin family and can assist in skin therapy.


Subject(s)
Claudins , Plant Extracts , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Humans , Plant Extracts/pharmacology , Claudins/metabolism , Claudins/genetics , Epidermis/drug effects , Epidermis/metabolism , Disease Models, Animal , Cell Movement/drug effects , Wound Healing/drug effects , Skin/drug effects , Skin/metabolism
5.
Adv Exp Med Biol ; 1445: 151-156, 2024.
Article in English | MEDLINE | ID: mdl-38967757

ABSTRACT

Skin is the most prominent tissue and organ, as well as the first line of defence, of the body. Because it is situated on the body's surface, it is constantly exposed to microbial, chemical, and physical factors such as mechanical stimulation. Therefore, skin has evolved substantial immune defences, regenerative ability, and anti-injury capacity. Epidermal cells produce antibacterial peptides that play a role in immune defence under physiological conditions. Additionally, IgG or IgA in the skin also participates in local anti-infective immunity. However, based on the classical theory of immunology, Ig can only be produced by B cells which should be derived from local B cells. This year, thanks to the discovery of Ig derived from non B cells (non B-Ig), Ig has also been found to be expressed in epidermal cells and contributes to immune defence. Epidermal cell-derived IgG and IgA have been demonstrated to have potential antibody activity by binding to pathogens. However, these epidermal cell-derived Igs show different microbial binding characteristics. For instance, IgG binds to Staphylococcus aureus and IgA binds to Staphylococcus epidermidis. Epidermal cells producing IgG and IgA may serve as an effective defense mechanism alongside B cells, providing a novel insight into skin immunity.


Subject(s)
Immunoglobulin A , Skin , Humans , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Skin/immunology , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , B-Lymphocytes/immunology , Immunoglobulins/immunology , Immunoglobulins/metabolism , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Epidermis/immunology , Epidermis/metabolism , Epidermal Cells/immunology , Epidermal Cells/metabolism
7.
Nat Commun ; 15(1): 5795, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987250

ABSTRACT

Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.


Subject(s)
Ascomycota , Caenorhabditis elegans , Cysteine , Fungal Proteins , Virulence Factors , Animals , Caenorhabditis elegans/microbiology , Virulence Factors/metabolism , Virulence Factors/genetics , Cysteine/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ascomycota/pathogenicity , Ascomycota/genetics , Ascomycota/metabolism , Immunity, Innate , Extracellular Matrix/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Epidermis/metabolism , Epidermis/microbiology
8.
Nutrients ; 16(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931252

ABSTRACT

Breast milk contains numerous factors that are involved in the maturation of the immune system and development of the gut microbiota in infants. These factors include transforming growth factor-ß1 and 2, immunoglobin A, and lactoferrin. Breast milk factors may also affect epidermal differentiation and the stratum corneum (SC) barrier in infants, but no studies examining these associations over time during infancy have been reported. In this single-center exploratory study, we measured the molecular components of the SC using confocal Raman spectroscopy at 0, 1, 2, 6, and 12 months of age in 39 infants born at our hospital. Breast milk factor concentrations from their mothers' breast milk were determined. Correlation coefficients for the two datasets were estimated for each molecular component of the SC and breast milk factor at each age and SC depth. The results showed that breast milk factors and molecular components of the SC during infancy were partly correlated with infant age in months and SC depth, suggesting that breast milk factors influence the maturation of the SC components. These findings may improve understanding of the pathogenesis of skin diseases associated with skin barrier abnormalities.


Subject(s)
Epidermis , Milk, Human , Humans , Milk, Human/chemistry , Infant , Female , Prospective Studies , Infant, Newborn , Male , Epidermis/metabolism , Epidermis/chemistry , Longitudinal Studies , Lactoferrin/analysis , Lactoferrin/metabolism , Spectrum Analysis, Raman , Transforming Growth Factor beta1/analysis , Transforming Growth Factor beta1/metabolism
9.
Cell Rep ; 43(6): 114271, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823013

ABSTRACT

The epithelial adaptations to mechanical stress are facilitated by molecular and tissue-scale changes that include the strengthening of junctions, cytoskeletal reorganization, and cell-proliferation-mediated changes in tissue rheology. However, the role of cell size in controlling these properties remains underexplored. Our experiments in the zebrafish embryonic epidermis, guided by theoretical estimations, reveal a link between epithelial mechanics and cell size, demonstrating that an increase in cell size compromises the tissue fracture strength and compliance. We show that an increase in E-cadherin levels in the proliferation-deficient epidermis restores epidermal compliance but not the fracture strength, which is largely regulated by Ezrin-an apical membrane-cytoskeleton crosslinker. We show that Ezrin fortifies the epithelium in a cell-size-dependent manner by countering non-muscle myosin-II-mediated contractility. This work uncovers the importance of cell size maintenance in regulating the mechanical properties of the epithelium and fostering protection against future mechanical stresses.


Subject(s)
Cell Size , Cytoskeletal Proteins , Myosin Type II , Zebrafish , Animals , Zebrafish/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Myosin Type II/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Stress, Mechanical , Epithelial Cells/metabolism , Cadherins/metabolism , Epidermis/metabolism , Epithelium/metabolism , Cell Proliferation
10.
Theranostics ; 14(8): 3339-3357, 2024.
Article in English | MEDLINE | ID: mdl-38855186

ABSTRACT

Rationale: Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown. Here, we explored the role of metabolic competition in epidermal cell proliferation and differentiation in psoriatic skin. Methods: Bulk- and single-cell RNA-sequencing, spatial transcriptomics, and glucose uptake experiments were used to analyze the metabolic differences in epidermal cells in psoriasis. Functional validation in vivo and in vitro was done using imiquimod-like mouse models and inflammatory organoid models. Results: We observed the highly proliferative basal cells in psoriasis act as the winners of the metabolic competition to uptake glucose from suprabasal cells. Using single-cell metabolic analysis, we found that the "winner cells" promote OXPHOS pathway upregulation by COX7B and lead to increased ROS through glucose metabolism, thereby promoting the hyperproliferation of basal cells in psoriasis. Also, to prevent toxic damage from ROS, basal cells activate the glutathione metabolic pathway to increase their antioxidant capacity to assist in psoriasis progression. We further found that COX7B promotes psoriasis development by modulating the activity of the PPAR signaling pathway by bulk RNA-seq analysis. We also observed glucose starvation and high expression of SLC7A11 that causes suprabasal cell disulfide stress and affects the actin cytoskeleton, leading to immature differentiation of suprabasal cells in psoriatic skin. Conclusion: Our study demonstrates the essential role of cellular metabolic competition for skin tissue homeostasis.


Subject(s)
Cell Differentiation , Cell Proliferation , Glucose , Keratinocytes , Psoriasis , Psoriasis/metabolism , Psoriasis/pathology , Glucose/metabolism , Humans , Animals , Mice , Keratinocytes/metabolism , Disease Models, Animal , Single-Cell Analysis , Epidermal Cells/metabolism , Reactive Oxygen Species/metabolism , Energy Metabolism , Epidermis/metabolism , Epidermis/pathology , Imiquimod , Male
11.
Exp Dermatol ; 33(6): e15096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922774

ABSTRACT

While the evidence for the implication of opioid receptors (OPr) in ageing is growing, there is, to our knowledge, no study focusing directly on changes in vivo cutaneous OPr expression with increasing age. We thus investigated OPr expression in 30 healthy female Asian volunteers in Southern China whose ages range from the early 20s to the early 60s. Excisional biopsies were taken from the sun-exposed extensor area of the lower arm and the photo-protected area of the upper inner arm. The thickness of the epidermal layers, melanin content, as well as expression of mu-opioid receptors (MOPr) and delta-opioid receptors (DOPr) were compared between different age ranges and photo-exposure status. Significant increased epidermal hypertrophy on the extensor surface was observed. There was significant reduction of DOPr in the epidermis with increasing age, independent of photo-ageing. The increase of melanin was significantly correlated with epidermal DOPr expression, not with MOPr expression. DOPr expression could thus serve as a marker for real biological ageing unaffected by chronic photo-exposure. Additionally, DOPr expression was inversely correlated with the deposition of melanin. Based on these results, we hypothesise that regulation of DOPr expression could be used to improve aged skin, including hyperpigmentation.


Subject(s)
Asian People , Melanins , Receptors, Opioid, delta , Skin Aging , Humans , Female , Melanins/metabolism , Melanins/biosynthesis , Adult , Receptors, Opioid, delta/metabolism , Middle Aged , Young Adult , Epidermis/metabolism , Receptors, Opioid, mu/metabolism , China
12.
Biomed Res Int ; 2024: 1041392, 2024.
Article in English | MEDLINE | ID: mdl-38933176

ABSTRACT

Two-dimensional (2D) cell culture is an important tool in the discovery of skin-active agents. Fibroblasts and keratinocytes, more rarely fibroblast-keratinocyte cocultures, are usually used for that purpose, where test compounds are added by mixing with the overlaying growth medium. However, such an approach is suboptimal because it lacks the stratum corneum component. The stratum corneum acts as a selective gatekeeper and opposes the intradermal permeation of many compounds that are bioactive when placed in direct contact with cells. One solution is to use reconstituted epidermis, but this approach is costly and time consuming. Here, a model is proposed, where the simplicity and convenience of the 2D cell culture is combined with the advantage of a hydrophobic barrier reminiscent of the skin horny layer. This model was tested with skin-relevant solvents, as well as with "naked" hydrophilic and encapsulated compounds. Cell viability and collagen stimulation were used as readouts. The results showed that the incorporation of a stratum corneum-substitute barrier on top of a 2D cell culture reduced the cytotoxicity of a common cosmetic solvent, dimethyl isosorbide (DMI), in cell culture and modified the bioactivity of the added actives (magnesium ascorbyl phosphate [MAP] and oligomeric proanthocyanidins [OPCs]/levan biopolymer), which became dependent on their ability to penetrate through a lipidic layer. Taken together, these results indicate a better physiological relevance of this cell culture model in workflows aimed at the discovery and analysis of skin-active compounds than conventional 2D systems.


Subject(s)
Coculture Techniques , Keratinocytes , Coculture Techniques/methods , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Keratinocytes/drug effects , Epidermis/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Survival/drug effects , Skin/cytology , Skin/metabolism , Models, Biological
13.
Mar Drugs ; 22(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921559

ABSTRACT

The skin of fish is a physicochemical barrier that is characterized by being formed by cells that secrete molecules responsible for the first defense against pathogenic organisms. In this study, the biological activity of peptides from mucus of Seriola lalandi and Seriolella violacea were identified and characterized. To this purpose, peptide extraction was carried out from epidermal mucus samples of juveniles of both species, using chromatographic strategies for purification. Then, the peptide extracts were characterized to obtain the amino acid sequence by mass spectrometry. Using bioinformatics tools for predicting antimicrobial and antioxidant activity, 12 peptides were selected that were chemically produced by simultaneous synthesis using the Fmoc-Tbu strategy. The results revealed that the synthetic peptides presented a random coil or extended secondary structure. The analysis of antimicrobial activity allowed it to be discriminated that four peptides, named by their synthesis code 5065, 5069, 5070, and 5076, had the ability to inhibit the growth of Vibrio anguillarum and affected the copepodite stage of C. rogercresseyi. On the other hand, peptides 5066, 5067, 5070, and 5077 had the highest antioxidant capacity. Finally, peptides 5067, 5069, 5070, and 5076 were the most effective for inducing respiratory burst in fish leukocytes. The analysis of association between composition and biological function revealed that the antimicrobial activity depended on the presence of basic and aromatic amino acids, while the presence of cysteine residues increased the antioxidant activity of the peptides. Additionally, it was observed that those peptides that presented the highest antimicrobial capacity were those that also stimulated respiratory burst in leukocytes. This is the first work that demonstrates the presence of functional peptides in the epidermal mucus of Chilean marine fish, which provide different biological properties when the fish face opportunistic pathogens.


Subject(s)
Aquaculture , Fishes , Mucus , Animals , Mucus/chemistry , Chile , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Peptides/pharmacology , Peptides/chemistry , Peptides/isolation & purification , Vibrio/drug effects , Epidermis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification
14.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928177

ABSTRACT

This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values published in earlier works. The mean free volume of 0.269 nm was slightly lower than the theoretical value of 0.4 nm. The lifetime τ3 (1.83 ns with a coefficient of variation CV of 3.21%) is dependent on the size of open sites in the skin. This information was used to calculate the free volume radius R (0.269 nm with CV 2.14%), free volume size Vf (0.081 nm3 with CV 4.69%), and the intensity I3 (9.01% with CV 10.94%) to estimate the relative fractional free volume fv (1.32 a.u. with CV 13.68%) in human skin ex vivo. The relation between the lifetime of o-Ps (τ3) and the radius of free volume (R) was formulated using the Tao-Eldrup model, which assumes spherical voids and applies to sites with radii smaller than 1 nm. The results indicate that PALS is a powerful tool for confirming the existence of free volumes and determining their size. The studies also focused on describing the probable locations of these nanospaces in SC lipid bilayers. According to the theory, these play an essential role in dynamic processes in biological systems, including the diffusion of low-molecular-weight hydrophobic and moderately hydrophilic molecules. The mechanism of their formation has been determined by the molecular dynamics of the lipid chains.


Subject(s)
Epidermis , Lipid Bilayers , Spectrum Analysis , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Spectrum Analysis/methods , Epidermis/metabolism , Epidermis/chemistry , Skin/metabolism , Skin/chemistry
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124617, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38870697

ABSTRACT

Confocal Raman Spectroscopy is recognised as a potent tool for molecular characterisation of biological specimens. There is a growing demand for In Vitro Permeation Tests (IVPT) in the pharmaceutical and cosmetic areas, increasingly conducted using Reconstructed Human Epidermis (RHE) skin models. In this study, chemical fixation of RHE in 10 % Neutral Buffered Formalin for 24 h has been examined for storing RHE samples at 4 °C for up to 21 days. Confocal Raman Spectroscopy (CRS), combined with Principal Components Analysis, revealed the molecular-level effects of fixation, notably in protein and lipid conformation within the stratum corneum and viable epidermis. IVPT by means of high-performance liquid chromatography, using caffeine as a model compound, showed minimal impact of formalin fixation on the cumulative amount, flux, and permeability coefficient after 12 h. While the biochemical architecture is altered, the function of the model as a barrier to maintain rate-limiting diffusion of active molecules within skin layers remains intact. This study opens avenues for enhanced flexibility and utility in skin model research, promising insights into mitigating the limited shelf life of RHE models by preserving performance in fixed samples for up to 21 days.


Subject(s)
Epidermis , Formaldehyde , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Epidermis/metabolism , Epidermis/drug effects , Formaldehyde/chemistry , Permeability/drug effects , Tissue Fixation/methods , Caffeine/pharmacology , Caffeine/metabolism , Skin Absorption/drug effects , Principal Component Analysis
16.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892279

ABSTRACT

Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.


Subject(s)
Epidermis , Gene Expression Regulation, Neoplastic , Keratin-16 , Melanoma , S100 Calcium Binding Protein A7 , Skin Neoplasms , Zinc Finger Protein GLI1 , Humans , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , S100 Calcium Binding Protein A7/metabolism , S100 Calcium Binding Protein A7/genetics , Epidermis/metabolism , Epidermis/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Cell Line, Tumor , Keratin-16/metabolism , Keratin-16/genetics , Up-Regulation , Male , Female , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged
17.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934416

ABSTRACT

Transit-amplifying (TA) cells are progenitors that undergo an amplification phase followed by transition into an extinction phase. A long postulated epidermal TA progenitor with biphasic behavior has not yet been experimentally observed in vivo. Here, we identify such a TA population using clonal analysis of Aspm-CreER genetic cell-marking in mice, which uncovers contribution to both homeostasis and injury repair of adult skin. This TA population is more frequently dividing than a Dlx1-CreER-marked long-term self-renewing (e.g. stem cell) population. Newly developed generalized birth-death modeling of long-term lineage tracing data shows that both TA progenitors and stem cells display neutral competition, but only the stem cells display neutral drift. The quantitative evolution of a nascent TA cell and its direct descendants shows that TA progenitors indeed amplify the basal layer before transition and that the homeostatic TA population is mostly in extinction phase. This model will be broadly useful for analyzing progenitors whose behavior changes with their clone age. This work identifies a long-missing class of non-self-renewing biphasic epidermal TA progenitors and has broad implications for understanding tissue renewal mechanisms.


Subject(s)
Epidermal Cells , Epidermis , Stem Cells , Animals , Mice , Stem Cells/cytology , Stem Cells/metabolism , Epidermal Cells/cytology , Epidermal Cells/metabolism , Epidermis/metabolism , Cell Proliferation , Cell Lineage , Homeostasis , Cell Differentiation , Cell Self Renewal/physiology
18.
J Cell Sci ; 137(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38940346

ABSTRACT

Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.


Subject(s)
Desmosomes , Desmosomes/metabolism , Humans , Animals , Epidermis/metabolism
19.
Front Immunol ; 15: 1394530, 2024.
Article in English | MEDLINE | ID: mdl-38881903

ABSTRACT

Objective: Injectable skin fillers offer a wider range of options for cutaneous anti-aging and facial rejuvenation. PLLA microspheres are increasingly favored as degradable and long-lasting fillers. The present study focused solely on the effect of PLLA on dermal collagen, without investigating its impact on the epidermis. In this study, we investigated the effects of PLLA microspheres on epidermal stem cells (EpiSCs). Methods: Different concentrations of PLLA microspheres on epidermal stem cells (EpiSCs) in vitro through culture, and identification of primary rat EpiSCs. CCK-8 detection, apoptosis staining, flow cytometry, Transwell assay, wound healing assay, q-PCR analysis, and immunofluorescence staining were used to detect the effects of PLLA on EpiSCs. Furthermore, we observed the effect on the epidermis by injecting PLLA into the dermis of the rat skin in vivo. Results: PLLA microspheres promote cell proliferation and migration while delaying cell senescence and maintaining its stemness. In vitro, Intradermal injection of PLLA microspheres in the rat back skin resulted in delayed aging, as evidenced by histological and immunohistochemical staining of the skin at 2, 4, and 12 weeks of follow-up. Conclusion: This study showed the positive effects of PLLA on rat epidermis and EpiSCs, while providing novel insights into the anti-aging mechanism of PLLA.


Subject(s)
Cellular Senescence , Microspheres , Polyesters , Skin Aging , Animals , Rats , Cellular Senescence/drug effects , Skin Aging/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation/drug effects , Epidermal Cells/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Epidermis/metabolism , Epidermis/drug effects , Cell Movement/drug effects , Dermal Fillers/pharmacology , Dermal Fillers/administration & dosage
20.
J Nanobiotechnology ; 22(1): 307, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825668

ABSTRACT

Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.


Subject(s)
Extracellular Vesicles , Fibroblasts , Glutathione Transferase , RNA, Messenger , Skin Aging , Wound Healing , Animals , Mice , Fibroblasts/metabolism , Glutathione Transferase/metabolism , Extracellular Vesicles/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Epidermis/metabolism , Mice, Inbred C57BL , Oxidative Stress , Skin/metabolism , Male , Humans , Epidermal Cells/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...