Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.089
Filter
1.
Cancer Med ; 13(13): e7394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970307

ABSTRACT

BACKGROUND: Germline mutations have been identified in a small number of hereditary cancers, but the genetic predisposition for many familial cancers remains to be elucidated. METHODS: This study identified a Chinese pedigree that presented different cancers (breast cancer, BRCA; adenocarcinoma of the esophagogastric junction, AEG; and B-cell acute lymphoblastic leukemia, B-ALL) in each of the three generations. Whole-genome sequencing and whole-exome sequencing were performed on peripheral blood or bone marrow and cancer biopsy samples. Whole-genome bisulfite sequencing was conducted on the monozygotic twin brothers, one of whom developed B-ALL. RESULTS: According to the ACMG guidelines, bioinformatic analysis of the genome sequencing revealed 20 germline mutations, particularly mutations in the DNAH11 (c.9463G > A) and CFH (c.2314G > A) genes that were documented in the COSMIC database and validated by Sanger sequencing. Forty-one common somatic mutated genes were identified in the cancer samples, displaying the same type of single nucleotide substitution Signature 5. Meanwhile, hypomethylation of PLEK2, MRAS, and RXRA as well as hypermethylation of CpG island associated with WT1 was shown in the twin with B-ALL. CONCLUSIONS: These findings reveal genomic alterations in a pedigree with multiple cancers. Mutations found in the DNAH11, CFH genes, and other genes predispose to malignancies in this family. Dysregulated methylation of WT1, PLEK2, MRAS, and RXRA in the twin with B-ALL increases cancer susceptibility. The similarity of the somatic genetic changes among the three cancers indicates a hereditary impact on the pedigree. These familial cancers with germline and somatic mutations, as well as epigenomic alterations, represent a common molecular basis for many multiple cancer pedigrees.


Subject(s)
DNA Methylation , Exome Sequencing , Genetic Predisposition to Disease , Germ-Line Mutation , Pedigree , Humans , Male , Female , Whole Genome Sequencing , Middle Aged , Genomics/methods , Adult , Epigenesis, Genetic , CpG Islands , Epigenomics/methods , Axonemal Dyneins/genetics
2.
Commun Biol ; 7(1): 824, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971948

ABSTRACT

The expression dysregulation of microRNAs (miRNA) has been widely reported during cancer development, however, the underling mechanism remains largely unanswered. In the present work, we performed a systematic integrative study for genome-wide DNA methylation, copy number variation and miRNA expression data to identify mechanisms underlying miRNA dysregulation in lower grade glioma. We identify 719 miRNAs whose expression was associated with alterations of copy number variation or promoter methylation. Integrative multi-omics analysis revealed four subtypes with differing prognoses. These glioma subtypes exhibited distinct immune-related characteristics as well as clinical and genetic features. By construction of a miRNA regulatory network, we identified candidate miRNAs associated with immune evasion and response to immunotherapy. Finally, eight prognosis related miRNAs were validated to promote cell migration, invasion and proliferation through in vitro experiments. Our study reveals the crosstalk among DNA methylation, copy number variation and miRNA expression for immune regulation in glioma, and could have important implications for patient stratification and development of biomarkers for immunotherapy approaches.


Subject(s)
Brain Neoplasms , DNA Copy Number Variations , DNA Methylation , Gene Expression Regulation, Neoplastic , Glioma , MicroRNAs , Humans , Glioma/genetics , Glioma/immunology , Glioma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Epigenomics , Genomics , Gene Regulatory Networks , Cell Line, Tumor , Immune Evasion/genetics , Epigenesis, Genetic , Female , Male , Prognosis , Neoplasm Grading
3.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(7): 1007-1013, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-39004974

ABSTRACT

Objective: Exploring gene-age interactions associated with breast cancer prognosis based on epigenomic data. Methods: Differential expression analysis of DNA methylation was conducted using multiple independent epigenomic datasets of breast cancer from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The false discovery rate (FDR) method was used for multiple corrections, retaining differentially methylated sites with q-FDR≤0.05. A three-stage analytic strategy was implemented, using a multivariable Cox proportional hazards regression model to examine gene-age interactions. In the discovery phase, signals with q-FDR ≤ 0.05 were screened out using TCGA-BRCA database. In validation phaseⅠ, the interaction was validated using GSE72245 data, with criteria of P≤0.05 and consistent effect direction. In validation phaseⅡ, the signals were further validated using GSE37754 and GSE75067 data. A prognostic prediction model was constructed by incorporating clinical indicators and interaction signals. Results: The three-stage analytic strategy identified a methylation site (cg16126280EBF1), which interacted with age to jointly affect the overall survival time of patients (interaction HR= 1.001 1,95%CI:1.000 7-1.001 5,P<0.001). Stratified analysis by age showed that the effect of hypermethylation of cg16126280EBF1 was completely opposite in younger patients (HR=0.550 5, 95%CI: 0.383 8-0.789 6, P=0.001) and older patients (HR=2.166 5, 95%CI: 1.285 2-3.652 2, P=0.004). Conclusions: The DNA methylation site cg16126280EBF1 exhibits an interaction with age, jointly influencing the prognosis of breast cancer in a complex association pattern. This finding contributes new population-based evidence for the development of age-specific targeted drugs.


Subject(s)
Breast Neoplasms , DNA Methylation , Epigenomics , Humans , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Female , Prognosis , Age Factors , Proportional Hazards Models , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Databases, Genetic , Middle Aged
4.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000359

ABSTRACT

Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.


Subject(s)
Biomarkers, Tumor , Epigenomics , Immune Checkpoint Inhibitors , Immunotherapy , Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Immune Checkpoint Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Immunotherapy/methods , Epigenomics/methods , Genomics/methods , Epigenesis, Genetic
5.
Genome Biol ; 25(1): 186, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987810

ABSTRACT

DNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap). Accumulated off-target coverage enables genome-wide differentially methylated region (DMR) calling for clusters with as few as 115 cells. We characterize sciMET-cap on human PBMCs and brain (middle frontal gyrus).


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Leukocytes, Mononuclear/metabolism , Sequence Analysis, DNA/methods , Epigenomics/methods , Brain/metabolism
6.
Methods Mol Biol ; 2826: 65-77, 2024.
Article in English | MEDLINE | ID: mdl-39017886

ABSTRACT

Epigenetic programs play a key role in regulating the development and function of immune cells. However, conventional methods for profiling epigenetic mechanisms, such as the post-translational modifications to histones, present several technical challenges that prevent a complete understanding of gene regulation. Here, we provide a detailed protocol of the Cleavage Under Targets and Tagmentation (CUT&Tag) chromatin profiling technique for identifying histone modifications in human and mouse lymphocytes.


Subject(s)
B-Lymphocyte Subsets , Epigenesis, Genetic , Epigenomics , Histones , Humans , Animals , Mice , Epigenomics/methods , Histones/metabolism , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/immunology , Chromatin/metabolism , Chromatin/genetics , Protein Processing, Post-Translational , Histone Code
7.
Methods Mol Biol ; 2842: 79-101, 2024.
Article in English | MEDLINE | ID: mdl-39012591

ABSTRACT

To achieve exquisite control over the epigenome, we need a better predictive understanding of how transcription factors, chromatin regulators, and their individual domain's function, both as modular parts and as full proteins. Transcriptional effector domains are one class of protein domains that regulate transcription and chromatin. These effector domains either repress or activate gene expression by interacting with chromatin-modifying enzymes, transcriptional cofactors, and/or general transcriptional machinery. Here, we discuss important design considerations for high-throughput investigations of effector domains, recent advances in discovering new domains in human cells and testing how domain function depends on amino acid sequence. For every effector domain, we would like to know the following: What role does the cell type, signaling state, and targeted context have on activation, silencing, and epigenetic memory? Large-scale measurements of transcriptional activities can help systematically answer these questions and identify general rules for how all these parameters affect effector domain activities. Last, we discuss what steps need to be taken to turn a newly discovered effector domain into a robust, precise epigenome editor. With more carefully considered high-throughput investigations, soon we will have better predictive control over the epigenome.


Subject(s)
Epigenesis, Genetic , Humans , Transcription, Genetic , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation , Chromatin/genetics , Chromatin/metabolism , High-Throughput Screening Assays/methods , Protein Domains , Epigenomics/methods
8.
Methods Mol Biol ; 2842: 23-55, 2024.
Article in English | MEDLINE | ID: mdl-39012589

ABSTRACT

The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors (EEs) enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus-specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here, we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to: account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus-specificity by considering concentration, affinity, avidity, and sequestration effects.


Subject(s)
Chromatin , Gene Editing , Humans , Chromatin/genetics , Chromatin/metabolism , Gene Editing/methods , Epigenome , Epigenomics/methods , Epigenesis, Genetic , Genetic Loci , Animals , CRISPR-Cas Systems
9.
Methods Mol Biol ; 2842: 225-252, 2024.
Article in English | MEDLINE | ID: mdl-39012599

ABSTRACT

Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.


Subject(s)
Chromatin , Epigenesis, Genetic , Genes, Reporter , Chromatin/metabolism , Chromatin/genetics , Humans , Flow Cytometry/methods , Histones/metabolism , Epigenomics/methods , Gene Expression Regulation
10.
Methods Mol Biol ; 2842: 179-192, 2024.
Article in English | MEDLINE | ID: mdl-39012596

ABSTRACT

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Subject(s)
Alleles , CRISPR-Cas Systems , DNA Methylation , Epigenome , Gene Editing , Humans , Gene Editing/methods , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , Epigenomics/methods , Epigenesis, Genetic
11.
Methods Mol Biol ; 2842: 255-265, 2024.
Article in English | MEDLINE | ID: mdl-39012600

ABSTRACT

To fully exploit the potentials of reprogramming the epigenome through CRISPR/dCas9 systems for epigenetic editing, there is a growing need for improved transfection methods. With the utilization of constructs often with large sizes and the wide array of cell types used to read out the effect of epigenetic editing in different biological applications, it is evident that ongoing optimalization of transfection protocols tailored to each specific experimental setup is essential. Whether the goal is the production of viral particles using human embryonic kidney (HEK) cells or the direct examination of epigenomic modifications in the target cell type, continuous refinement of transfection methods is crucial. In the hereafter outlined protocol, we focus on optimization of transfection protocols by comparing different reagents and methods, creating a streamlined setup for transfection efficiency optimization in cultured mammalian cells. Our protocol provides a comprehensive overview of flow cytometry analysis following transfection not just to improve transfection efficiency but also to assess the expression level of the utilized construct. We showcase our transfection protocol optimization using HEK293T Lenti-X™ and breast cancer MCF-7 cell lines, using a single-guide RNA-containing plasmid. Specifically, we incorporate heat shock treatment for increased transfection efficiency of the MCF-7 cell line. Our detailed optimization protocol for efficient plasmid delivery and measurement of single-cell plasmid expression provides a comprehensive instruction for assessing both transient and sustained effects of epigenetic reprogramming.


Subject(s)
CRISPR-Cas Systems , Epigenesis, Genetic , Gene Editing , Plasmids , Single-Cell Analysis , Transfection , Humans , Plasmids/genetics , Gene Editing/methods , HEK293 Cells , Transfection/methods , Single-Cell Analysis/methods , Epigenomics/methods , Flow Cytometry
12.
Methods Mol Biol ; 2842: 353-382, 2024.
Article in English | MEDLINE | ID: mdl-39012605

ABSTRACT

The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and clinical questions. DNA methylation analysis bears the particular promise to supplement or replace biochemical and imaging-based tests for the next generation of personalized medicine. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here, we provide a detailed protocol based on a commercial kit for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. The protocol is based on the construction of sequencing libraries from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For analyses requiring a quantitative distinction between 5-methylcytosine and 5-hydroxymethylcytosines levels, an oxidation step is included in the same workflow to perform oxidative bisulfite sequencing (OxBs-Seq). In this case, two sequencing libraries will be generated and sequenced: a classic methylome following bisulfite conversion and analyzing modified cytosines (not distinguishing between methylated and hydroxymethylated cytosines) and a methylome analyzing only methylated cytosines, respectively. Hydroxymethylation levels are deduced from the differences between the two reactions. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human and plant samples and yields robust and reproducible results.


Subject(s)
5-Methylcytosine , DNA Methylation , High-Throughput Nucleotide Sequencing , Sulfites , Whole Genome Sequencing , Sulfites/chemistry , Whole Genome Sequencing/methods , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/analysis , Humans , High-Throughput Nucleotide Sequencing/methods , Epigenomics/methods , Sequence Analysis, DNA/methods , Epigenesis, Genetic
13.
Methods Mol Biol ; 2842: 405-418, 2024.
Article in English | MEDLINE | ID: mdl-39012608

ABSTRACT

DNA methylation is an important epigenetic modification that regulates chromatin structure and the cell-type-specific expression of genes. The association of aberrant DNA methylation with many diseases, as well as the increasing interest in modifying the methylation mark in a directed manner at genomic sites using epigenome editing for research and therapeutic purposes, increases the need for easy and efficient DNA methylation analysis methods. The standard approach to analyze DNA methylation with a single-cytosine resolution is bisulfite conversion of DNA followed by next-generation sequencing (NGS). In this chapter, we describe a robust, powerful, and cost-efficient protocol for the amplification of target regions from bisulfite-converted DNA, followed by a second PCR step to generate libraries for Illumina NGS. In the two consecutive PCR steps, first, barcodes are added to individual amplicons, and in the second PCR, indices and Illumina adapters are added to the samples. Finally, we describe a detailed bioinformatics approach to extract DNA methylation levels of the target regions from the sequencing data. Combining barcodes with indices enables a high level of multiplexing allowing to sequence multiple pooled samples in the same sequencing run. Therefore, this method is a robust, accurate, quantitative, and cheap approach for the readout of DNA methylation patterns at defined genomic regions.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , Sulfites , Sulfites/chemistry , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , Humans , DNA/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods , Epigenesis, Genetic , Epigenomics/methods
14.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39023332

ABSTRACT

BACKGROUND: The epigenome, the set of modifications to DNA and associated molecules that control gene expression, cellular identity, and function, plays a major role in mediating cellular responses to outside factors. Thus, evaluation of the epigenetic state can provide insights into cellular adaptions occurring over the course of disease. METHODS: We performed epigenome-wide association studies of primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) using the Illumina MethylationEPIC Bead Chip. RESULTS: We found evidence of increased epigenetic age acceleration and differences in predicted immune cell composition in patients with PSC and PBC. Epigenetic profiles demonstrated differences in predicted protein levels including increased levels of tumor necrosis factor receptor superfamily member 1B in patients with cirrhotic compared to noncirrhotic PSC and PBC. Epigenome-wide association studies of PSC discovered strongly associated 5'-C-phosphate-G-3' sites in genes including vacuole membrane protein 1 and SOCS3, and epigenome-wide association studies of PBC found strong 5'-C-phosphate-G-3' associations in genes including NOD-like receptor family CARD domain containing 5, human leukocyte antigen-E, and PSMB8. Analyses identified disease-associated canonical pathways and upstream regulators involved with immune signaling and activation of macrophages and T-cells. A comparison of PSC and PBC data found relatively little overlap at the 5'-C-phosphate-G-3' and gene levels with slightly more overlap at the level of pathways and upstream regulators. CONCLUSIONS: This study provides insights into methylation profiles of patients that support current concepts of disease mechanisms and provide novel data to inspire future research. Studies to corroborate our findings and expand into other -omics layers will be invaluable to further our understanding of these rare diseases with the goal to improve and individualize prognosis and treatment.


Subject(s)
Cholangitis, Sclerosing , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Liver Cirrhosis, Biliary , Humans , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/immunology , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/immunology , Female , Middle Aged , Male , Adult , Epigenome , Epigenomics , Aged
15.
Methods Mol Biol ; 2842: 3-20, 2024.
Article in English | MEDLINE | ID: mdl-39012588

ABSTRACT

The introduction of CRISPR/Cas systems has resulted in a strong impulse for the field of gene-targeted epigenome/epigenetic reprogramming (EpiEditing), where EpiEditors consisting of a DNA binding part for targeting and an enzymatic part for rewriting of chromatin modifications are applied in cells to alter chromatin modifications at targeted genome loci in a directed manner. Pioneering studies preceding this era indicated causal relationships of chromatin marks instructing gene expression. The accumulating evidence of chromatin reprogramming of a given genomic locus resulting in gene expression changes opened the field for mainstream applications of this technology in basic and clinical research. The growing knowledge on chromatin biology and application of EpiEditing tools, however, also revealed a lack of predictability of the efficiency of EpiEditing in some cases. In this perspective, the dependence of critical parameters such as specificity, effectivity, and sustainability of EpiEditing on experimental settings and conditions including the expression levels and expression times of the EpiEditors, their chromatin binding affinity and specificity, and the crosstalk between EpiEditors and cellular epigenome modifiers are discussed. These considerations highlight the intimate connection between the outcome of epigenome reprogramming and the details of the technical approaches toward EpiEditing, which are the main topic of this volume of Methods in Molecular Biology. Once established in a fully functional "plug-and-play" mode, EpiEditing will allow to better understand gene expression control and to translate such knowledge into therapeutic tools. These expectations are beginning to be met as shown by various in vivo EpiEditing applications published in recent years, several companies aiming to exploit the therapeutic power of EpiEditing and the first clinical trial initiated.


Subject(s)
CRISPR-Cas Systems , Chromatin , Epigenesis, Genetic , Epigenome , Gene Editing , Animals , Humans , Chromatin/genetics , Chromatin/metabolism , Epigenomics/methods , Gene Editing/methods
16.
Methods Mol Biol ; 2842: 103-127, 2024.
Article in English | MEDLINE | ID: mdl-39012592

ABSTRACT

Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.


Subject(s)
Epigenesis, Genetic , Epigenome , Gene Editing , Animals , Humans , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , CRISPR-Cas Systems , Epigenomics/methods , Gene Editing/methods , Gene Expression Regulation
17.
Methods Mol Biol ; 2842: 57-77, 2024.
Article in English | MEDLINE | ID: mdl-39012590

ABSTRACT

Epigenome editing has emerged as a powerful technique for targeted manipulation of the chromatin and transcriptional landscape, employing designer DNA binding domains fused with effector domains, known as epi-editors. However, the constitutive expression of dCas9-based epi-editors presents challenges, including off-target activity and lack of temporal resolution. Recent advancements of dCas9-based epi-editors have addressed these limitations by introducing innovative switch systems that enable temporal control of their activity. These systems allow precise modulation of gene expression over time and offer a means to deactivate epi-editors, thereby reducing off-target effects associated with prolonged expression. The development of novel dCas9 effectors regulated by exogenous chemical signals has revolutionized temporal control in epigenome editing, significantly expanding the researcher's toolbox. Here, we provide a comprehensive review of the current state of these cutting-edge systems and specifically discuss their advantages and limitations, offering context to better understand their capabilities.


Subject(s)
Epigenesis, Genetic , Gene Editing , Gene Editing/methods , Humans , Epigenesis, Genetic/drug effects , Epigenome , CRISPR-Cas Systems , Chromatin/genetics , Chromatin/metabolism , Epigenomics/methods , Animals
18.
Methods Mol Biol ; 2842: 325-352, 2024.
Article in English | MEDLINE | ID: mdl-39012604

ABSTRACT

The discovery of 5-hydroxymethylcytosine (5hmC) as a common DNA modification in mammalian genomes has ushered in new areas of inquiry regarding the dynamic epigenome. The balance between 5hmC and its precursor, 5-methylcytosine (5mC), has emerged as a determinant of key processes including cell fate specification, and alterations involving these bases have been implicated in the pathogenesis of various diseases. The identification of 5hmC separately from 5mC initially posed a challenge given that legacy epigenetic sequencing technologies could not discriminate between these two most abundant modifications, a significant blind spot considering their potentially functionally opposing roles. The growing interest in 5hmC, as well as in the Ten-Eleven Translocation (TET) family enzymes that catalyze its generation and further oxidation to 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), has spurred the development of versatile methods for 5hmC detection. These methods enable the quantification and localization of 5hmC in diverse biological samples and, in some cases, at the resolution of individual nucleotides. However, navigating this growing toolbox of methods for 5hmC detection can be challenging. Here, we detail existing and emerging methods for the detection, quantification, and localization of 5hmC at global, locus-specific, and base resolution levels. These methods are discussed in the context of their advantages and limitations, with the goal of providing a framework to help guide researchers in choosing the level of resolution and the associated method that could be most suitable for specific needs.


Subject(s)
5-Methylcytosine , DNA , Animals , Humans , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/analysis , 5-Methylcytosine/metabolism , DNA/genetics , DNA Methylation , Epigenesis, Genetic , Epigenomics/methods , Genome , Genomics/methods
19.
Eur Respir Rev ; 33(173)2024 Jul.
Article in English | MEDLINE | ID: mdl-38960613

ABSTRACT

Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.


Subject(s)
Bronchiectasis , Genetic Predisposition to Disease , Genomics , Lung , Bronchiectasis/physiopathology , Bronchiectasis/genetics , Bronchiectasis/metabolism , Bronchiectasis/immunology , Humans , Lung/physiopathology , Lung/microbiology , Lung/metabolism , Microbiota , Host-Pathogen Interactions , Phenotype , Proteomics , Epigenesis, Genetic , Immunity, Innate , Animals , Risk Factors , Metabolomics , Prognosis , Epigenomics
20.
Article in English | MEDLINE | ID: mdl-38996445

ABSTRACT

Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.


Subject(s)
Genomics , Metabolomics , Plants , Proteomics , Single-Cell Analysis , Single-Cell Analysis/methods , Plants/genetics , Plants/metabolism , Metabolomics/methods , Proteomics/methods , Genomics/methods , Epigenomics/methods , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...