Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Biochem Biophys Res Commun ; 719: 150046, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38749088

ABSTRACT

Cancer poses a significant risk to human well-being. Among the crucial characteristics of cancer is metabolic reprogramming. To meet the relentless metabolic needs, cancer cells enhance cholesterol metabolism within the adverse tumor microenvironment. Reprograming cholesterol metabolism includes a series of modifications in the synthesis, absorption, esterification, and metabolites associated with cholesterol. These adjustments have a strong correlation with the proliferation, invasion, metastasis, and other characteristics of malignant tumors. FDFT1, also known as farnesyl diphosphate farnesyltransferase 1, is an enzyme crucial in the process of cholesterol biosynthesis. Its significant involvement in tumor metabolism has garnered considerable interest. The significance of FDFT1 in cancer metabolism cannot be overstated, as it actively interacts with cancer cells. This paper aims to analyze and consolidate the mechanism of FDFT1 in cancer metabolism and explore its clinical application. The goal is to contribute new strategies and targets for the prevention and treatment of cancer metabolism.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Cholesterol/metabolism , Animals , Tumor Microenvironment
2.
Appl Radiat Isot ; 210: 111372, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810354

ABSTRACT

As is the case for most solid tumours, chemotherapy remains the backbone in the management of metastatic disease. However, the occurrence of chemotherapy resistance is a cause to worry, especially in bladder cancer. Extensive evidence indicates molecular changes in bladder cancer cells to be the underlying cause of chemotherapy resistance, including the reduced expression of farnesyl-diphosphate farnesyltransferase 1 (FDFT1) - a gene involved in cholesterol biosynthesis. This can likely be a hallmark in examining the resistance and sensitivity of chemotherapy drugs. This work performs spectroscopic analysis and metabolite characterization on resistant, sensitive, stable-disease and healthy bladder tissues. Raman spectroscopy has detected peaks at around 1003 cm-1 (squalene), 1178 cm-1 (cholesterol), 1258 cm-1 (cholesteryl ester), 1343 cm-1 (collagen), 1525 cm-1 (carotenoid), 1575 cm-1 (DNA bases) and 1608 cm-1 (cytosine). The peak parameters were examined, and statistical analysis was performed on the peak features, attaining significant differences between the sample groups. Small-angle x-ray scattering (SAXS) measurements observed the triglyceride peak together with 6th, 7th and 8th - order collagen peaks; peak parameters were also determined. Neutron activation analysis (NAA) detected seven trace elements. Carbon (Ca), magnesium (Mg), chlorine (Cl) and sodium (Na) have been found to have the greatest concentration in the sample groups, suggestive of a role as a biomarker for cisplatin resistance studies. Results from the present research are suggested to provide an important insight into understanding the development of drug resistance in bladder cancer, opening up the possibility of novel avenues for treatment through personalised interventions.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Spectrum Analysis, Raman , Urinary Bladder Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Farnesyltranstransferase/metabolism , Spectrum Analysis, Raman/methods , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , X-Ray Diffraction , Farnesyl-Diphosphate Farnesyltransferase/metabolism
3.
Sci Adv ; 10(8): eadk7416, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38381828

ABSTRACT

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize because of cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wild type, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1- 2, and 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wild-type chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate-derived austinols provides unexpected insight into routes of terpene synthesis in fungi.


Subject(s)
Aspergillus nidulans , Polyisoprenyl Phosphates , Sesquiterpenes , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Squalene , Terpenes/metabolism
4.
J Agric Food Chem ; 72(6): 3017-3024, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315649

ABSTRACT

Dehydrosqualene synthase (CrtM), as a squalene synthase-like enzyme from Staphylococcus aureus, can naturally utilize farnesyl diphosphate to produce dehydrosqualene (C30H48). However, no study has documented the natural production of squalene (C30H50) by CrtM. Here, based on an HPLC-Q-Orbitrap-MS/MS study, we report that the expression of crtM in vitro or in Bacillus subtilis 168 both results in the output of squalene, dehydrosqualene, and phytoene (C40H64). Notably, wild-type CrtM exhibits a significantly higher squalene yield compared to squalene synthase (SQS) from Bacillus megaterium with an approximately 2.4-fold increase. Moreover, the examination of presqualene diphosphate's stereostructures in both CrtM and SQS enzymes provides further understanding into the presence of multiple identified terpenoids. In summary, this study not only provides insights into the promiscuity demonstrated by squalene synthase-like enzymes but also highlights a new strategy of utilizing CrtM as a potential replacement for SQS in cell factories, thereby enhancing squalene production.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Squalene , Squalene/analogs & derivatives , Squalene/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Tandem Mass Spectrometry , Terpenes/metabolism , Nitric Oxide Synthase
5.
J Biol Chem ; 300(2): 105644, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218226

ABSTRACT

Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase , Mevalonic Acid , Aspartic Acid Endopeptidases , Cholesterol/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Mevalonic Acid/metabolism , Terpenes , HEK293 Cells , Humans
6.
J Agric Food Chem ; 71(11): 4599-4614, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36880571

ABSTRACT

Jujube (Ziziphus jujuba Mill.) is rich in valuable bioactive triterpenoids. However, the regulatory mechanism underlying triterpenoid biosynthesis in jujube remains poorly studied. Here, we characterized the triterpenoid content in wild jujube and cultivated jujube. The triterpenoid content was higher in wild jujube than in cultivated jujube, triterpenoids were most abundant in young leaves, buds, and later stages of development. The transcriptome analysis and correlation analysis showed that differentially expressed genes (DEGs) were enriched in the terpenoid synthesis pathways, and triterpenoids content was strongly correlated with farnesyl diphosphate synthase (ZjFPS), squalene synthase (ZjSQS), and transcription factors ZjMYB39 and ZjMYB4 expression. Gene overexpression and silencing analysis indicated that ZjFPS and ZjSQS were key genes in triterpenoid biosynthesis and transcription factors ZjMYB39 and ZjMYB4 regulated triterpenoid biosynthesis. Subcellular localization experiments showed that ZjFPS and ZjSQS were localized to the nucleus and endoplasmic reticulum and ZjMYB39 and ZjMYB4 were localized to the nucleus. Yeast one-hybrid, glucuronidase activity, and dual-luciferase activity assays suggested that ZjMYB39 and ZjMYB4 regulate triterpenoid biosynthesis by directly binding and activating the promoters of ZjFPS and ZjSQS. These findings provide insights into the underlying regulatory network of triterpenoids metabolism in jujube and lay theoretical and practical foundation for molecular breeding.


Subject(s)
Triterpenes , Ziziphus , Transcription Factors/genetics , Transcription Factors/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Geranyltranstransferase/metabolism , Triterpenes/metabolism , Fruit/metabolism
7.
ACS Chem Biol ; 18(1): 123-133, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36608315

ABSTRACT

Lavanduquinocin (LDQ) is a potent neuroprotective carbazole alkaloid from Streptomyces species that features a rare cyclic monoterpene/cyclolavandulyl moiety attached to the tricyclic carbazole nucleus. We elucidated the biosynthetic logic of LDQ by enzymatically reconstituting the total biosynthetic pathway and identified the genes required for generating the cyclolavandulyl moiety in LDQ based on mutagenetic analysis, including a cyclolavandulyl diphosphate synthase gene ldqA and a squalene synthase-like aromatic prenyltransferase gene ldqG. LdqG is homologous to carbazole prenyltransferases, NzsG and CqsB4, discovered from the biosynthetic pathways of two bacterial carbazoles, neocarazostatin and carquinostatin. Based on analysis of the sequences and modeled protein structures, further in vitro and in vivo site-directed mutagenetic analyses led to identification of two residue sites, F53 and C57 in NzsG vs I54 and A58 in LdqG, which play crucial roles in governing the prenyl donor specificities toward cyclolavandulyl, dimethylallyl, and geranyl diphosphates. By applying this knowledge in strain engineering, prenyl donor delivery was rationally switched to produce the desired prenylated carbazoles. The study provides an opportunity to rationally manipulate the prenylation modification to carbazole alkaloids, which could influence the biological activities by increasing the affinity for membranes as well as the interactions with cellular targets.


Subject(s)
Alkaloids , Dimethylallyltranstransferase , Dimethylallyltranstransferase/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Carbazoles/chemistry , Prenylation
8.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4877-4885, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164897

ABSTRACT

Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 µmol·m~(-2)·s~(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 µmol·m~(-2)·s~(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 µmol·m~(-2)·s~(-1) light intensity was slightly lower than that with 80 µmol·m~(-2)·s~(-1). The root-to-shoot ratio in the treatment with 120 µmol·m~(-2)·s~(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-Ⅱ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 µmol·m~(-2)·s~(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 µmol·m~(-2)·s~(-1)) and strong light(160 µmol·m~(-2)·s~(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 µmol·m~(-2)·s~(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.


Subject(s)
Ginsenosides , Panax , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Panax/metabolism , Plant Roots/metabolism , Sand , Squalene Monooxygenase
9.
Sci Rep ; 12(1): 11313, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788652

ABSTRACT

Leishmaniasis is a neglected disease caused by protozoan parasites of the Leishmania genus. Benzylamines are a class of compounds selectively designed to inhibit the squalene synthase (SQS) that catalyzes the first committed reaction on the sterol biosynthesis pathway. Herein, we studied seven new benzylamines (SBC 37-43) against Leishmania amazonensis. After the first screening of cell viability, two inhibitors (SBC 39 and SBC 40) were selected. Against intracellular amastigotes, SBC 39 and SBC 40 presented selectivity indexes of 117.7 and 180, respectively, indicating high selectivity. Analysis of the sterol composition revealed a depletion of endogenous 24-alkylated sterols such as episterol and 5-dehydroepisterol, with a concomitant accumulation of fecosterol, implying a disturbance in cellular lipid content. This result suggests a blockade of de novo sterol synthesis at the level of SQS and C-5 desaturase. Furthermore, physiological analysis and electron microscopy revealed three main alterations: (1) in the mitochondrion; (2) the presence of lipid bodies and autophagosomes; and (3) the appearance of projections in the plasma membrane. In conclusion, our results support the notion that benzylamines have a potent effect against Leishmania amazonensis and should be an exciting novel pharmaceutical lead for developing new chemotherapeutic alternatives to treat leishmaniasis.


Subject(s)
Leishmania mexicana , Leishmania , Benzylamines/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Oxidative Stress , Sterols/metabolism
10.
Angew Chem Int Ed Engl ; 61(20): e202117430, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35235232

ABSTRACT

Some enzymes annotated as squalene synthase catalyze the prenylation of carbazole-3,4-quinone-containing substrates in bacterial secondary metabolism. Their reaction mechanisms remain unclear because of their low sequence similarity to well-characterized aromatic substrate prenyltransferases (PTs). We determined the crystal structures of the carbazole PTs, and these revealed that the overall structure is well superposed on those of squalene synthases. In contrast, the stacking interaction between the prenyl donor and acceptor substrates resembles those observed in aromatic substrate PTs. Structural and mutational analyses suggest that the Ile and Asp residues are essential for the hydrophobic and hydrophilic interactions with the carbazole-3,4-quinone moiety of the prenyl acceptor, respectively, and a deprotonation mechanism of an intermediary σ-complex involving a catalytic triad is proposed. Our results provide a structural basis for a new subclass of aromatic substrate PTs.


Subject(s)
Biological Products , Dimethylallyltranstransferase , Carbazoles , Catalysis , Dimethylallyltranstransferase/metabolism , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Prenylation , Quinones , Substrate Specificity
11.
Biochem Biophys Res Commun ; 599: 75-80, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35176628

ABSTRACT

Over 800 known carotenoids are synthesized from phytoene or 4,4'-diapophytoene (dehydrosqualene) characterized by three conjugated double bonds. In this paper, we report that carotenoid desaturase CrtN from Staphylococcus aureus and Methylomonas can accept oxidosqualene, which is the precursor for plant- or animal-type triterpenoids, yielding the yellow carotenoid pigments with 8, 9, or 10 conjugated double bonds. The resulting pathway is the second nonnatural route for carotenoid pigments and the first pathway for carotenoid pigments not biosynthesized via (diapo)phytoene.


Subject(s)
Biosynthetic Pathways/physiology , Carotenoids/metabolism , Escherichia coli/metabolism , Squalene/analogs & derivatives , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carotenoids/chemistry , Escherichia coli/genetics , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Microorganisms, Genetically-Modified , Oxidoreductases/genetics , Oxidoreductases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Squalene/metabolism , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism
12.
World J Microbiol Biotechnol ; 38(3): 44, 2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35064842

ABSTRACT

Methicillin resistant Staphylococcus aureus is considered multidrug resistant bacterium due to developing biofilm formation associated with antimicrobial resistance mechanisms. Therefore, inhibition of biofilm formation is an alternative therapeutic action to control MRSA infections. The present study revealed the non-antibacterial biofilm inhibitory potential of hesperidin against ATCC strain and clinical isolates of S. aureus. Hesperidin is a flavanone glycoside commonly found in citrus fruit. Hesperidin has been shown to exhibits numerous pharmacological activities. The present study aimed to evaluate the antibiofilm and antivirulence potential of hesperidin against MRSA. Results showed that hesperidin treatment significantly impedes lipase, hemolysin, autolysin, autoaggregation and staphyloxanthin production. Reductions of staphyloxanthin production possibly increase the MRSA susceptibility rate to H2O2 oxidative stress condition. In gene expression study revealed that hesperidin treatment downregulated the biofilm-associated gene (sarA), polysaccharide intracellular adhesion gene (icaA and icaD), autolysin (altA), fibronectin-binding protein (fnbA and fnbB) and staphyloxanthin production (crtM). Molecular docking analysis predicted the ability of hesperidin to interact with SarA and CrtM proteins involved in biofilm formation and staphyloxanthin production in MRSA.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/drug effects , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Hesperidin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Trans-Activators/metabolism , Xanthophylls/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Farnesyl-Diphosphate Farnesyltransferase/chemistry , Gene Expression Regulation, Bacterial , Hesperidin/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Trans-Activators/chemistry , Virulence/drug effects , Virulence Factors/metabolism
13.
Cancer Sci ; 113(3): 971-985, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34939274

ABSTRACT

Colon adenocarcinoma (COAD) is one of the most prevalent malignancies, with poor prognosis and lack of effective treatment targets. Squalene synthase (FDFT1) is an upstream enzyme of squalene epoxidase (SQLE) in cholesterol biosynthesis. In a previous study, we revealed that SQLE promotes colon cancer cell proliferation in vitro and in vivo. Here, we investigate the prognostic value of FDFT1 in stage I-III COAD and explore the potential underlying mechanisms. Squalene synthase was significantly upregulated in stage I-III COAD and positively correlated with poor differentiation and advanced tumor stage. High expression of FDFT1 was an independent predictor of overall and relapse-free survival, and the nomograms based on FDFT1 could effectively identify patients at high risk of poor outcome. Squalene synthase accelerated colon cancer cell proliferation and promoted tumor growth. Lack of FDFT1 resulted in accumulating NAT8 and D-pantethine to lower reactive oxygen species levels and inhibit colon cancer cell proliferation. Moreover, the combined inhibition of FDFT1 and SQLE induced a greater suppressive effect on cell proliferation and tumor growth than single inhibition. Taken together, these results indicate that FDFT1 predicts poor prognosis in stage I-III COAD and has the tumor-promoting effect on COAD through regulating NAT8 and D-pantethine. Targeting both FDFT1 and SQLE is a more promising therapy than their single inhibition for stage I-III COAD.


Subject(s)
Colonic Neoplasms/enzymology , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Squalene Monooxygenase/metabolism , Acetyltransferases/metabolism , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Farnesyl-Diphosphate Farnesyltransferase/deficiency , Female , Humans , Male , Mice , Middle Aged , Neoplasm Staging , Pantetheine/analogs & derivatives , Pantetheine/metabolism , Prognosis , Reactive Oxygen Species/metabolism , Squalene Monooxygenase/deficiency , Xenograft Model Antitumor Assays
14.
Biomolecules ; 11(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34680069

ABSTRACT

Mevalonate Kinase Deficiency (MKD) is a rare inborn disease belonging to the family of periodic fever syndromes. The MKD phenotype is characterized by systemic inflammation involving multiple organs, including the nervous system. Current anti-inflammatory approaches to MKD are only partially effective and do not act specifically on neural inflammation. According to the new emerging pharmacology trends, the repositioning of drugs from the indication for which they were originally intended to another one can make mechanistic-based medications easily available to treat rare diseases. According to this perspective, the squalene synthase inhibitor Lapaquistat (TAK-475), originally developed as a cholesterol-lowering drug, might find a new indication in MKD, by modulating the mevalonate cholesterol pathway, increasing the availability of anti-inflammatory isoprenoid intermediates. Using an in vitro model for MKD, we mimicked the blockade of the cholesterol pathway and evaluated the potential anti-inflammatory effect of Lapaquistat. The results obtained showed anti-inflammatory effects of Lapaquistat in association with a low blockade of the metabolic pathway, while this effect did not remain with a tighter blockade. On these bases, Lapaquistat could be configured as an effective treatment for MKD's mild forms, in which the residual enzymatic activity is only reduced and not almost completely absent as in the severe forms.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Inflammation/drug therapy , Inflammation/enzymology , Mevalonate Kinase Deficiency/enzymology , Oxazepines/therapeutic use , Piperidines/therapeutic use , Alendronate/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Biosynthetic Pathways/drug effects , Cell Death/drug effects , Cell Shape/drug effects , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/ultrastructure , Mevalonic Acid/metabolism , Mice , Mitochondria/drug effects , Mitochondria/pathology , Mitochondria/ultrastructure , Oxazepines/pharmacology , Piperidines/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
15.
Angew Chem Int Ed Engl ; 60(40): 21824-21831, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34374184

ABSTRACT

KY02111 is a widely used small molecule that boosts cardiomyogenesis of the mesoderm cells derived from pluripotent stem cells, yet its molecular mechanism of action remains elusive. The present study resolves the initially perplexing effects of KY02111 on Wnt signaling and subsequently identifies squalene synthase (SQS) as a molecular target of KY02111 and its optimized version, KY-I. By disrupting the interaction of SQS with cardiac ER-membrane protein TMEM43, KY02111 impairs TGFß signaling, but not Wnt signaling, and thereby recapitulates the clinical mutation of TMEM43 that causes arrhythmogenic right ventricular cardiomyopathy (ARVC), an inherited heart disease that involves a substitution of myocardium with fatty tissue. These findings reveal a heretofore undescribed role of SQS in TGFß signaling and cardiomyogenesis. KY02111 may find its use in ARVC modeling as well as serve as a chemical tool for studying TGFß/SMAD signaling.


Subject(s)
Benzothiazoles/pharmacology , Enzyme Inhibitors/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Myocardium/metabolism , Phenylpropionates/pharmacology , Transforming Growth Factor beta/antagonists & inhibitors , Benzothiazoles/chemistry , Enzyme Inhibitors/chemistry , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Humans , Molecular Structure , Phenylpropionates/chemistry , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
16.
Chem Biodivers ; 18(7): e2100342, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34148286

ABSTRACT

Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. is a precious traditional Chinese medicine, and steroidal saponins are its major bioactive constituents possessing extensive biological activities. Squalene synthase (SQS) catalyzes the first dedicated step converting two molecular of farnesyl diphosphate (FDP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. In this study, a squalene synthase gene (PpSQS1) was cloned and functionally characterized from P. polyphylla var. yunnanensis, representing the first identified SQS from the genus Paris. The open reading frame of PpSQS1 is 1239 bp, which encodes a protein of 412 amino acids showing high similarity to those of other plant SQSs. Expression of PpSQS1 in Escherichia coli resulted in production of soluble recombinant proteins. Gas chromatography-mass spectrometry analysis showed that the purified recombinant PpSQS1 protein could produce squalene using FDP as a substrate in the in vitro enzymatic assay. qRT-PCR analysis indicated that PpSQS1 was highly expressed in rhizomes, consistent with the dominant accumulation of steroidal saponins there, suggesting that PpSQS1 is likely involved in the biosynthesis of steroidal saponins in the plant. The findings lay a foundation for further investigation on the biosynthesis and regulation of steroidal saponins, and also provide an alternative gene for manipulation of steroid production using synthetic biology.


Subject(s)
Farnesyl-Diphosphate Farnesyltransferase/metabolism , Melanthiaceae/enzymology , Cloning, Molecular , Farnesyl-Diphosphate Farnesyltransferase/genetics , Medicine, Chinese Traditional , Sequence Alignment , Sequence Analysis, Protein
17.
Biochem Biophys Res Commun ; 552: 120-127, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33744759

ABSTRACT

Epithelial ovarian cancer (EOC) is the seventh most common cancer worldwide and the deadliest gynecological malignancy because of its aggressiveness and high recurrence rate. To discover new therapeutic targets for EOC, we combined public EOC microarray datasets with our previous in vivo shRNA screening dataset. The top-ranked gene ubiquitin specific peptidase 32 (USP32), coding a deubiquitinating enzyme, is a component of the ubiquitin proteasome system. Clinically, USP32 is expressed in primary ovarian cancer, especially in metastatic peritoneal tumors, and negatively impacts the survival outcome. USP32 regulates proliferative and epithelial mesenchymal transition capacities that are associated with EOC progression. Proteomic analysis identified farnesyl-diphosphate farnesyltransferase 1 (FDFT1) as a novel substrate of USP32 that is an enzyme in the mevalonate pathway, essentially associated with cell proliferation and stemness. USP32 and FDFT1 expression was higher in tumor spheres than in adherent cells. Inhibition of USP32, FDFT1, or mevalonate pathway considerably suppressed tumor sphere formation, which was restored by adding squalene, a downstream product of FDFT1. These findings suggested that USP32-FDFT1 axis contributes to EOC progression, and could be novel therapeutic targets for EOC treatment.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Farnesyl-Diphosphate Farnesyltransferase/genetics , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Ovarian Neoplasms/genetics , Ubiquitin Thiolesterase/genetics , Animals , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/therapy , Cell Line, Tumor , Cell Proliferation/genetics , Disease-Free Survival , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Female , HEK293 Cells , Humans , Mice, Nude , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/therapy , RNA Interference , RNAi Therapeutics/methods , Ubiquitin Thiolesterase/metabolism , Xenograft Model Antitumor Assays/methods
18.
Cells ; 9(11)2020 10 25.
Article in English | MEDLINE | ID: mdl-33113804

ABSTRACT

Farnesyl-diphosphate farnesyltransferase 1 (FDFT1, squalene synthase), a membrane-associated enzyme, synthesizes squalene via condensation of two molecules of farnesyl pyrophosphate. Accumulating evidence has noted that FDFT1 plays a critical role in cancer, particularly in metabolic reprogramming, cell proliferation, and invasion. Based on these advances in our knowledge, FDFT1 could be a potential target for cancer treatment. This review focuses on the contribution of FDFT1 to the hallmarks of cancer, and further, we discuss the applicability of FDFT1 as a cancer prognostic marker and target for anticancer therapy.


Subject(s)
Disease Susceptibility , Farnesyl-Diphosphate Farnesyltransferase/genetics , Neoplasms/etiology , Neoplasms/metabolism , Tumor Microenvironment , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cholesterol/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
19.
Int Immunopharmacol ; 88: 106865, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32827918

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a progressive and chronic liver disease. No effective drug is currently approved for the treatment of NAFLD. Traditionally it is thought that pathogenesis of NAFLD develops from some imbalance in lipid control, thereby leading to hepatotoxicity and disease development. Squalene synthase (SQS), encoded by FDFT1, is a key regulator in cholesterol synthesis and thus a potential target for the treatment of NAFLD. Here we could identify bavachinin, a component from traditional Chinese medicine Fructus Psoraleae (FP), which apparently protects HepaRG cells from palmitic acid induced death, suppressing lipid accumulation and cholesterol synthesis through inhibition of FDFT1 through the AKT/mTOR/SREBP-2 pathway. Over-expression of FDFT1 abolished bavachinin (BVC) -induced inhibition of cholesterol synthesis. The data presented here suggest that bavachinin acts as a cholesterol synthesis enzyme inhibitor, and might serve as a drug for treating NAFLD in the future.


Subject(s)
Anticholesteremic Agents/pharmacology , Cholesterol/biosynthesis , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Flavonoids/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Cell Line, Transformed , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Humans , Lipogenesis/drug effects , Liver/drug effects , Liver/enzymology , Liver/injuries , Palmitic Acid/adverse effects , Signal Transduction/drug effects , Transcriptome/drug effects
20.
Arch Pharm (Weinheim) ; 353(9): e2000085, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32557793

ABSTRACT

Squalene synthase (SQS) inhibitors, mostly known as antihyperlipidemic agents for controlling blood cholesterol levels, have been increasingly used to study alterations of the cholesterol content in cell membranes. As such, SQS inhibitors have been demonstrated to control cellular activities related to cancer cell proliferation and migration, neuron degeneration, and parasite growth. While the mechanisms behind the effects of cellular cholesterol are still being revealed in detail, the evidence for SQS as a therapeutic target for several seemingly unrelated diseases is increasing. SQS inhibitors may be the next promising candidates targeting the three remaining primary therapeutic areas, beyond cardiovascular disease, which still need to be addressed; their application as anticancer, antimicrobial, and antineurodegenerative agents appears promising for new drug discovery projects underway.


Subject(s)
Enzyme Inhibitors/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Hypolipidemic Agents/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Cholesterol/blood , Cholesterol/metabolism , Drug Discovery , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...