Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 921
Filter
1.
Clin Drug Investig ; 44(6): 387-398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698285

ABSTRACT

BACKGROUND AND OBJECTIVE: Aberrant accumulation of glycosphingolipids (GSLs) in the lysosome leads to GSL storage diseases. Glucosylceramide synthase inhibitors (GCSi) have the potential to treat several GSL storage diseases by reducing the synthesis of the disease-causing GSLs. AL01211 is a potent oral GCSi under investigation for Type 1 Gaucher disease and Fabry disease. Here, we evaluate the pharmacokinetics, pharmacodynamics, safety, and tolerability of AL01211 in healthy Chinese volunteers. METHODS: AL01211 was tested in a Phase 1, single-center, randomized, double-blind, placebo-controlled study with single-dose (15 and 60 mg) and multiple-dose (30 mg) arms. RESULTS: Results of AL01211 demonstrated dose-dependent pharmacokinetics, rapid absorption (median time to maximum plasma concentration [tmax] 2.5-4 hours), relatively slow clearance rate (mean apparent total clearance from plasma [CL/F] 88.3-200 L/h) and the mean terminal half-life above 30 hours. Repeated once-daily oral administration of AL01211 for 14 days had an approximately 2-fold accumulation, reaching steady-state levels between 7 and 10 days, and led to a 73% reduction in plasma glucosylceramide (GL1) on Day 14. AL01211 was safe and well tolerated, with no identified serious adverse events. CONCLUSION: AL01211 showed a favorable pharmacokinetic, pharmacodynamics, safety, and tolerability profile in healthy Chinese volunteers. These data support the further clinical development of AL01211 as a therapy for GSL storage diseases. CLINICAL TRIAL REGISTRY: Clinical Trial Registry no. CTR20221202 ( http://www.chinadrugtrials.org.cn ) registered on 6 June 2022 and ChiCTR2200061431 ( http://www.chictr.org.cn ) registered on 24 June 2022.


Subject(s)
Asian People , Glucosyltransferases , Healthy Volunteers , Humans , Double-Blind Method , Male , Adult , Administration, Oral , Young Adult , Female , Glucosyltransferases/antagonists & inhibitors , Dose-Response Relationship, Drug , China , Middle Aged , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , East Asian People
2.
Clin Pharmacol Drug Dev ; 13(6): 696-709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38363061

ABSTRACT

Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease. AL01211 has minimal central nervous system penetration, allowing for treatment of peripheral organs without risking CNS-associated adverse effects. AL01211 was evaluated in a Phase 1 healthy volunteer study with single ascending dose (SAD) and multiple ascending dose (MAD) arms, to determine safety, pharmacokinetics including food effect, and pharmacodynamic effects on associated GSLs. In the SAD arm, AL01211 showed a Tmax of approximately 3.5 hours, mean clearance (CL/F) of 130.1 L/h, and t1/2 of 39.3 hours. Consuming a high-fat meal prior to dose administration reduced exposures 3.5-5.5-fold, indicating a food effect. In the MAD arm, AL01211 had an approximately 2-fold accumulation, reaching steady-state levels by 10 days. Increasing exposure inversely correlated with a decrease in GSL with plasma glucosylceramide and globotriacylceramide reduction from baseline levels, reaching 78% and 52% by day 14, respectively. AL01211 was generally well-tolerated with no AL01211 associated serious adverse events, thus supporting its further clinical development.


Subject(s)
Enzyme Inhibitors , Fabry Disease , Gaucher Disease , Glucosyltransferases , Healthy Volunteers , Humans , Gaucher Disease/drug therapy , Glucosyltransferases/antagonists & inhibitors , Adult , Male , Female , Administration, Oral , Young Adult , Middle Aged , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/adverse effects , Fabry Disease/drug therapy , Dose-Response Relationship, Drug , Food-Drug Interactions , Double-Blind Method , Cross-Over Studies , Adolescent
3.
ChemMedChem ; 19(10): e202300641, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38329692

ABSTRACT

Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.


Subject(s)
Enzyme Inhibitors , Gaucher Disease , Gaucher Disease/drug therapy , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Chemistry, Pharmaceutical , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/metabolism , Glucosylceramidase/chemistry , Enzyme Replacement Therapy , Molecular Structure
4.
Nature ; 616(7955): 190-198, 2023 04.
Article in English | MEDLINE | ID: mdl-36949198

ABSTRACT

The membrane-integrated synthase FKS is involved in the biosynthesis of ß-1,3-glucan, the core component of the fungal cell wall1,2. FKS is the target of widely prescribed antifungal drugs, including echinocandin and ibrexafungerp3,4. Unfortunately, the mechanism of action of FKS remains enigmatic and this has hampered development of more effective medicines targeting the enzyme. Here we present the cryo-electron microscopy structures of Saccharomyces cerevisiae FKS1 and the echinocandin-resistant mutant FKS1(S643P). These structures reveal the active site of the enzyme at the membrane-cytoplasm interface and a glucan translocation path spanning the membrane bilayer. Multiple bound lipids and notable membrane distortions are observed in the FKS1 structures, suggesting active FKS1-membrane interactions. Echinocandin-resistant mutations are clustered at a region near TM5-6 and TM8 of FKS1. The structure of FKS1(S643P) reveals altered lipid arrangements in this region, suggesting a drug-resistant mechanism of the mutant enzyme. The structures, the catalytic mechanism and the molecular insights into drug-resistant mutations of FKS1 revealed in this study advance the mechanistic understanding of fungal ß-1,3-glucan biosynthesis and establish a foundation for developing new antifungal drugs by targeting FKS.


Subject(s)
Cryoelectron Microscopy , Glucosyltransferases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Antifungal Agents/pharmacology , beta-Glucans/metabolism , Catalytic Domain , Cell Membrane/chemistry , Cell Membrane/metabolism , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/ultrastructure , Microbial Sensitivity Tests , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
5.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: mdl-34764206

ABSTRACT

Understanding pathways that might impact coronavirus disease 2019 (COVID-19) manifestations and disease outcomes is necessary for better disease management and for therapeutic development. Here, we analyzed alterations in sphingolipid (SL) levels upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced elevation of SL levels in both cells and sera of infected mice. A significant increase in glycosphingolipid levels was induced early post SARS-CoV-2 infection, which was essential for viral replication. This elevation could be reversed by treatment with glucosylceramide synthase inhibitors. Levels of sphinganine, sphingosine, GA1, and GM3 were significantly increased in both cells and the murine model upon SARS-CoV-2 infection. The potential involvement of SLs in COVID-19 pathology is discussed.


Subject(s)
COVID-19/metabolism , Disease Models, Animal , Sphingolipids/metabolism , Virus Replication/physiology , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Chromatography, Liquid/methods , Dioxanes/pharmacology , Gangliosides/blood , Gangliosides/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Humans , Mass Spectrometry/methods , Mice, Transgenic , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Vero Cells , Virus Replication/drug effects
6.
Sci Rep ; 11(1): 20945, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686711

ABSTRACT

Mutations in GBA, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), represent the greatest genetic risk factor for developing synucleinopathies including Parkinson's disease (PD). Additionally, PD patients harboring a mutant GBA allele present with an earlier disease onset and an accelerated disease progression of both motor and non-motor symptoms. Preclinical studies in mouse models of synucleinopathy suggest that modulation of the sphingolipid metabolism pathway via inhibition of glucosylceramide synthase (GCS) using a CNS-penetrant small molecule may be a potential treatment for synucleinopathies. Here, we aim to alleviate the lipid storage burden by inhibiting the de novo synthesis of the primary glycosphingolipid substrate of GCase, glucosylceramide (GlcCer). We have previously shown that systemic GCS inhibition reduced GlcCer and glucosylsphingosine (GlcSph) accumulation, slowed α-synuclein buildup in the hippocampus, and improved cognitive deficits. Here, we studied the efficacy of a brain-penetrant clinical candidate GCS inhibitor, venglustat, in mouse models of GBA-related synucleinopathy, including a heterozygous Gba mouse model which more closely replicates the typical GBA-PD patient genotype. Collectively, these data support the rationale for modulation of GCase-related sphingolipid metabolism as a therapeutic strategy for treating GBA-related synucleinopathies.


Subject(s)
Carbamates/pharmacology , Glucosylceramidase/metabolism , Glucosylceramides/metabolism , Glucosyltransferases/antagonists & inhibitors , Quinuclidines/pharmacology , Synucleinopathies/drug therapy , Synucleinopathies/metabolism , Animals , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mutation/genetics , Parkinson Disease/metabolism
7.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638879

ABSTRACT

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in humans. At early stages CRC is treated by surgery and at advanced stages combined with chemotherapy. We examined here the potential effect of glucosylceramide synthase (GCS)-inhibition on CRC biology. GCS is the rate-limiting enzyme in the glycosphingolipid (GSL)-biosynthesis pathway and overexpressed in many human tumors. We suppressed GSL-biosynthesis using the GCS inhibitor Genz-123346 (Genz), NB-DNJ (Miglustat) or by genetic targeting of the GCS-encoding gene UDP-glucose-ceramide-glucosyltransferase- (UGCG). GCS-inhibition or GSL-depletion led to a marked arrest of the cell cycle in Lovo cells. UGCG silencing strongly also inhibited tumor spheroid growth in Lovo cells and moderately in HCT116 cells. MS/MS analysis demonstrated markedly elevated levels of sphingomyelin (SM) and phosphatidylcholine (PC) that occurred in a Genz-concentration dependent manner. Ultrastructural analysis of Genz-treated cells indicated multi-lamellar lipid storage in vesicular compartments. In mice, Genz lowered the incidence of experimentally induced colorectal tumors and in particular the growth of colorectal adenomas. These results highlight the potential for GCS-based inhibition in the treatment of CRC.


Subject(s)
Cell Cycle/drug effects , Colonic Neoplasms , Dioxanes/pharmacology , Glycosphingolipids , Pyrrolidines/pharmacology , Spheroids, Cellular , Animals , Colonic Neoplasms/chemically induced , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Glycosphingolipids/biosynthesis , Glycosphingolipids/genetics , HCT116 Cells , Humans , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
8.
Biol Pharm Bull ; 44(10): 1419-1426, 2021.
Article in English | MEDLINE | ID: mdl-34602551

ABSTRACT

Sphingolipids (SLs), such as ceramide, glucosylceramide (GlcCer), and sphingomyelin, play important roles in the normal development/functions of the brain and peripheral tissues. Disruption of SL homeostasis in cells/organelles, specifically up-regulation of ceramide, is involved in multiple diseases including Alzheimer's disease (AD). One of the pathological features of AD is aggregates of amyloid beta (Aß) peptides, and SLs regulate both the formation/aggregation of Aß and Aß-induced cellular responses. Up-regulation of ceramide levels via de novo and salvage synthesis pathways is reported in Aß-treated cells and brains with AD; however, the effects of Aß on ceramide decomposition pathways have not been elucidated. Thus, we investigated the effects of the 25-35-amino acid Aß peptide (Aß25-35), the fundamental cytotoxic domain of Aß, on SL metabolism in cells treated with the fluorescent nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide). Aß25-35 treatment reduced the formation of NBD-GlcCer mediated by GlcCer synthase (GCS) without affecting the formation of NBD-sphingomyelin or NBD-ceramide-1-phosphate, and reduced cell viability. Aß25-35-induced responses decreased in cells treated with D609, a putative inhibitor of sphingomyelin synthases. Aß25-35-induced cytotoxicity significantly increased in GCS-knockout cells and pharmacological inhibition of GCS alone demonstrated cytotoxicity. Our study revealed that Aß25-35-induced cytotoxicity is at least partially mediated by the inhibition of GCS activity.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Glucosyltransferases/antagonists & inhibitors , Norbornanes/pharmacology , Peptide Fragments/metabolism , Thiocarbamates/pharmacology , Alzheimer Disease/pathology , Cell Line , Glucosyltransferases/metabolism , Humans , Norbornanes/therapeutic use , Thiocarbamates/therapeutic use , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/metabolism
9.
Int J Oral Sci ; 13(1): 30, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34588414

ABSTRACT

Glucosyltransferases (Gtfs) play critical roles in the etiology and pathogenesis of Streptococcus mutans (S. mutans)- mediated dental caries including early childhood caries. Gtfs enhance the biofilm formation and promotes colonization of cariogenic bacteria by generating biofilm extracellular polysaccharides (EPSs), the key virulence property in the cariogenic process. Therefore, Gtfs have become an appealing target for effective therapeutic interventions that inhibit cariogenic biofilms. Importantly, targeting Gtfs selectively impairs the S. mutans virulence without affecting S. mutans existence or the existence of other species in the oral cavity. Over the past decade, numerous Gtfs inhibitory molecules have been identified, mainly including natural and synthetic compounds and their derivatives, antibodies, and metal ions. These therapeutic agents exert their inhibitory role in inhibiting the expression gtf genes and the activities and secretion of Gtfs enzymes with a wide range of sensitivity and effectiveness. Understanding molecular mechanisms of inhibiting Gtfs will contribute to instructing drug combination strategies, which is more effective for inhibiting Gtfs than one drug or class of drugs. This review highlights our current understanding of Gtfs activities and their potential utility, and discusses challenges and opportunities for future exploration of Gtfs as a therapeutic target.


Subject(s)
Biofilms , Dental Caries , Glucosyltransferases/antagonists & inhibitors , Streptococcus mutans , Dental Caries/microbiology , Dental Caries/prevention & control , Humans , Streptococcus mutans/enzymology
10.
Neurobiol Dis ; 159: 105507, 2021 11.
Article in English | MEDLINE | ID: mdl-34509608

ABSTRACT

Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.


Subject(s)
Benzoxazoles/pharmacology , Dopaminergic Neurons/drug effects , Glucosylceramidase/genetics , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/metabolism , Lysosomes/drug effects , Synucleinopathies/metabolism , alpha-Synuclein/drug effects , Animals , Dopaminergic Neurons/metabolism , In Vitro Techniques , Lysosomes/metabolism , Mice , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Primary Cell Culture , Protein Aggregates , Rats , Synucleinopathies/genetics , alpha-Synuclein/metabolism
11.
J Neurochem ; 159(3): 543-553, 2021 11.
Article in English | MEDLINE | ID: mdl-34398463

ABSTRACT

Gaucher disease (GD), the most common lysosomal storage disorders, is caused by GBA gene mutations resulting in glycosphingolipids accumulations in various tissues, such as the brain. While suppressing glycosphingolipid accumulation is the central strategy for treating peripheral symptoms of GD, there is no effective treatment for the central nervous system symptoms. As glycosphingolipid biosynthesis starts from ceramide glycosylation by glucosylceramide synthase (GCS), inhibiting GCS in the brain is a promising strategy for neurological GD. Herein, we discovered T-036, a potent and brain-penetrant GCS inhibitor with a unique chemical structure and binding property. T-036 does not harbor an aliphatic amine moiety and has a noncompetitive inhibition mode to the substrates, unlike other known inhibitors. T-036 exhibited sufficient exposure and a significant reduction of glucosylsphingolipids in the plasma and brain of the GD mouse model. Therefore, T-036 could be a promising lead molecule for treating central nervous system symptoms of GD.


Subject(s)
Brain/metabolism , Gaucher Disease/drug therapy , Glucosyltransferases/antagonists & inhibitors , Animals , Cerebral Cortex/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Glucosylceramidase , Glycosphingolipids/metabolism , Male , Mice , Mice, Inbred C57BL , Substrate Specificity
13.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209164

ABSTRACT

For many years, the biology of glycosphingolipids was elucidated with the help of glucosylceramide synthase (GCS) inhibitors such as 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Additionally, PDMP gained interest because of its chemosensitizing effects. Several studies have successfully combined PDMP and anti-cancer drugs in the context of cancer therapy. However, the mechanism of action of PDMP is not fully understood and seems to go beyond glycolipid inhibition. Here, we used a functionalized sphingosine analogue (pacSph) to investigate the acute effects of PDMP on cellular sphingolipid distribution and found that PDMP, but not other GCS inhibitors, such as ND-DNJ (also called Miglustat), induced sphingolipid accumulation in lysosomes. This effect could be connected to defective export from lysosome, as monitored by the prolonged lysosomal staining of sphingolipids as well as by a delay in the metabolic conversion of the pacSph precursor. Additionally, other lipids such as lysobisphosphatidic acid (LBPA) and cholesterol were enriched in lysosomes upon PDMP treatment in a time-dependent manner. We could further correlate early LBPA enrichment with dissociation of the mechanistic target of rapamycin (mTOR) from lysosomes followed by nuclear translocation of its downtream target, transcription factor EB (TFEB). Altogether, we report here a timeline of lysosomal lipid accumulation events and mTOR inactivation arising from PDMP treatment.


Subject(s)
Glucosyltransferases/antagonists & inhibitors , Lipid Metabolism/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , TOR Serine-Threonine Kinases/metabolism , Glucosyltransferases/metabolism , HeLa Cells , Humans
14.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805949

ABSTRACT

Here, we report a biochemical characterization of recombinant maize indole-3-acetyl-ß-d-glucose (IAGlc) synthase which glucosylates indole-3-acetic acid (IAA) and thus abolishes its auxinic activity affecting plant hormonal homeostasis. Substrate specificity analysis revealed that IAA is a preferred substrate of IAGlc synthase; however, the enzyme can also glucosylate indole-3-butyric acid and indole-3-propionic acid with the relative activity of 66% and 49.7%, respectively. KM values determined for IAA and UDP glucose are 0.8 and 0.7 mM, respectively. 2,4-Dichlorophenoxyacetic acid is a competitive inhibitor of the synthase and causes a 1.5-fold decrease in the enzyme affinity towards IAA, with the Ki value determined as 117 µM, while IAA-Asp acts as an activator of the synthase. Two sugar-phosphate compounds, ATP and glucose-1-phosphate, have a unique effect on the enzyme by acting as activators at low concentrations and showing inhibitory effect at higher concentrations (above 0.6 and 4 mM for ATP and glucose-1-phosphate, respectively). Results of molecular docking revealed that both compounds can bind to the PSPG (plant secondary product glycosyltransferase) motif of IAGlc synthase; however, there are also different potential binding sites present in the enzyme. We postulate that IAGlc synthase may contain more than one binding site for ATP and glucose-1-phosphate as reflected in its activity modulation.


Subject(s)
Glucosyltransferases/chemistry , Uridine Diphosphate Glucose/chemistry , Zea mays/enzymology , 2,4-Dichlorophenoxyacetic Acid/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Binding Sites , Cations , Enzyme Inhibitors/pharmacology , Escherichia coli/metabolism , Glucose/chemistry , Glucosephosphates/chemistry , Glucosyltransferases/antagonists & inhibitors , Homeostasis , Hydrogen-Ion Concentration , Kinetics , Molecular Docking Simulation , Plant Growth Regulators/metabolism , Recombinant Proteins/chemistry , Substrate Specificity , Zea mays/drug effects
16.
Plant J ; 106(6): 1605-1624, 2021 06.
Article in English | MEDLINE | ID: mdl-33793980

ABSTRACT

Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs and identified nine active analogs named ES20-1 to ES20-9. Among these, endosidin20-1 (ES20-1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. At the biochemical level, we demonstrated that ES20-1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20-1 likely targets the catalytic site of CESA. However, through molecular docking analysis using a modeled structure of full-length CESA6, we found that both ES20 and ES20-1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as isoxaben, C17, and flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are also valuable resources for the development of herbicides. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on a modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20-1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20-1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants, and both ES20 and ES20-1 show an inhibitory effect on bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Benzamides/pharmacology , Cellulose/biosynthesis , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Molecular Docking Simulation , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Gluconacetobacter xylinus/drug effects , Gluconacetobacter xylinus/enzymology , Glucosyltransferases/metabolism , Models, Molecular , Mutation, Missense , Plant Roots/growth & development , Protein Conformation
17.
J Biol Chem ; 296: 100470, 2021.
Article in English | MEDLINE | ID: mdl-33639165

ABSTRACT

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Dioxanes/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Pyrrolidines/pharmacology , Quinuclidines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , COVID-19/enzymology , COVID-19/virology , Carbamates/chemical synthesis , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/virology , Chlorocebus aethiops , Clinical Trials, Phase III as Topic , Dioxanes/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosphingolipids/biosynthesis , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Influenza, Human/enzymology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Pyrrolidines/chemical synthesis , Quinuclidines/chemical synthesis , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Signal Transduction , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
18.
ChemMedChem ; 16(1): 113-123, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32542998

ABSTRACT

We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics. Synthesis of the required mono- and disaccharide-based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC-MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose-acceptor maltose at the C1-hydroxy group act as glucose-donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4-10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF-activity assays. The early-stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteria/enzymology , Bacterial Proteins/antagonists & inhibitors , Glucosyltransferases/antagonists & inhibitors , Sugars/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Combinatorial Chemistry Techniques , Drug Discovery , Glucosyltransferases/metabolism , Protein Binding , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Structure-Activity Relationship , Surface Plasmon Resonance
19.
Clin Pharmacol Drug Dev ; 10(1): 86-98, 2021 01.
Article in English | MEDLINE | ID: mdl-32851809

ABSTRACT

Venglustat is a small-molecule glucosylceramide synthase (GCS) inhibitor designed to reduce the production of glucosylceramide (GL-1) and thus is expected to substantially reduce formation of glucosylceramide-based glycosphingolipids. Because of its effect on glycosphingolipid formation, GCS inhibition has therapeutic potential across many disorders affecting glycosphingolipid metabolism. Therefore, venglustat is under development for substrate reduction therapy in multiple diseases, including Gaucher disease type 3, Parkinson's disease associated with GBA mutations, Fabry disease, GM2 gangliosidosis, and autosomal dominant polycystic kidney disease. Phase 1 studies were conducted in healthy volunteers to determine venglustat pharmacokinetics, pharmacodynamics, safety, and tolerability and to assess food effects on pharmacokinetics (single-dose and food-effect studies: NCT01674036; repeated-dose study: NCT01710826). Following a single oral dose of venglustat l-malate (2, 5, 15, 25, 50, 100, or 150 mg), venglustat demonstrated linear pharmacokinetics, rapid absorption (median tmax , 3.00-5.50 hours), systemic exposure unaffected by food, low apparent total body clearance (mean CL/F, 5.18-6.43 L/h), and pooled geometric mean t1/2z of 28.9 hours. Following repeated once-daily oral doses of venglustat l-malate (5, 10, or 20 mg) for 14 days, apparent steady state occurred within 5 days of repeated dosing, with pooled accumulation ratios of 2.10 for Cmax and 2.22 for AUC0-24 , and no statistically significant effect of dose or sex on accumulation. The mean fraction of dose excreted unchanged in urine (fe0-24 ) was 26.3% to 33.1%. Plasma GL-1 and GM3 decreased time- and dose-dependently. Venglustat demonstrated a favorable safety and tolerability profile.


Subject(s)
Carbamates , Enzyme Inhibitors/pharmacokinetics , Glucosyltransferases/antagonists & inhibitors , Quinuclidines , Administration, Oral , Adolescent , Adult , Carbamates/administration & dosage , Carbamates/adverse effects , Carbamates/pharmacokinetics , Cross-Over Studies , Double-Blind Method , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Female , Gangliosides/blood , Glucosylceramides/blood , Healthy Volunteers , Humans , Male , Middle Aged , Quinuclidines/administration & dosage , Quinuclidines/adverse effects , Quinuclidines/pharmacokinetics , Young Adult
20.
Clin Transl Sci ; 14(2): 558-567, 2021 03.
Article in English | MEDLINE | ID: mdl-33142037

ABSTRACT

In this first-in-human study, the tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of single and multiple oral doses of sinbaglustat, a dual inhibitor of glucosylceramide synthase (GCS) and non-lysosomal glucosyl ceramidase (GBA2), were investigated in healthy subjects. The single-ascending dose (SAD) and multiple-ascending dose (MAD) studies were randomized, double-blind, and placebo-controlled. Single doses from 10 to 2,000 mg in men and multiple doses from 30 to 1,000 mg twice daily for 7 days in male and female subjects were investigated. Tolerability, PK, and PD data were collected up to 3 days after (last) treatment administration and analyzed descriptively. Sinbaglustat was well-tolerated in the SAD and MAD studies, however, at the highest dose of the MAD, three of the four female subjects presented a similar pattern of general symptoms. In all cohorts, sinbaglustat was rapidly absorbed. Thereafter, plasma concentrations decreased biphasically. In the MAD study, steady-state conditions were reached on Day 2 without accumulation. During sinbaglustat treatment, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide, and globotriaosylceramide decreased in a dose-dependent manner, reflecting GCS inhibition. The more complex the glycosphingolipid, the more time was required to elicit PD changes. After treatment stop, GlcCer levels returned to baseline and increased above baseline at lowest doses, probably due to the higher potency of sinbaglustat on GBA2 compared to GCS. Overall, sinbaglustat was welltolerated up to the highest tested doses. The PK profile is compatible with b.i.d. dosing. Sinbaglustat demonstrated target engagement in the periphery for GCS and GBA2.


Subject(s)
Glucosylceramidase/antagonists & inhibitors , Glucosyltransferases/antagonists & inhibitors , Imino Sugars/administration & dosage , Lysosomal Storage Diseases/drug therapy , Piperidines/administration & dosage , Administration, Oral , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Female , Half-Life , Healthy Volunteers , Humans , Imino Sugars/adverse effects , Imino Sugars/pharmacokinetics , Male , Middle Aged , Piperidines/adverse effects , Piperidines/pharmacokinetics , Placebos/administration & dosage , Placebos/adverse effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...