Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.878
Filter
1.
Subcell Biochem ; 104: 101-117, 2024.
Article in English | MEDLINE | ID: mdl-38963485

ABSTRACT

Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.


Subject(s)
Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Nucleosomes/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Histones/metabolism , Histones/chemistry , Histones/genetics , Cryoelectron Microscopy/methods
2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000028

ABSTRACT

Gene therapy is one of the most promising techniques for treating genetic diseases and cancer. The current most important problem in gene therapy is gene delivery. Viral and non-viral vectors like liposomes, used for gene delivery, have many limitations. We have developed new hybrid peptides by combining cell-penetrating peptides (CPPs) with the DNA-binding domain of the human histone H4 protein. These small peptides bind to DNA molecules through their histone domain, leaving the CPP part free and available for binding and penetration into cells, forming complexes that we named "peptosomes". We evaluated the transfection efficiency of several hybrid peptides by delivering a plasmid carrying the green fluorescent protein gene and following its expression by fluorescent microscopy. Among several hybrid peptides, TM3 achieved a gene delivery efficiency of 76%, compared to 52% for Lipofectamine 2000. TM3 peptosomes may become important gene delivery tools with several advantages over current gene delivery agents.


Subject(s)
Cell-Penetrating Peptides , Liposomes , Transfection , Humans , Liposomes/chemistry , Cell-Penetrating Peptides/chemistry , Transfection/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Gene Transfer Techniques , Plasmids/genetics , Genetic Therapy/methods , Histones/metabolism , Histones/chemistry , Histones/genetics , HeLa Cells
3.
Nat Commun ; 15(1): 5187, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992002

ABSTRACT

The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , Histones , Nucleosomes , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleosomes/chemistry , Histones/metabolism , Histones/genetics , Histones/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Protein Binding , Models, Molecular , DNA, Plant/metabolism , DNA, Plant/genetics
4.
Bioconjug Chem ; 35(7): 944-953, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954775

ABSTRACT

The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.


Subject(s)
Histones , Ketones , Ubiquitination , Histones/chemistry , Histones/metabolism , Histones/chemical synthesis , Ketones/chemistry , Ubiquitin/chemistry , Humans , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/chemistry , Nucleosomes/chemistry , Nucleosomes/metabolism
5.
Commun Biol ; 7(1): 707, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851815

ABSTRACT

The human protein lysine methyltransferase NSD2 catalyzes dimethylation at H3K36. It has very important roles in development and disease but many mechanistic features and its full spectrum of substrate proteins are unclear. Using peptide SPOT array methylation assays, we investigate the substrate sequence specificity of NSD2 and discover strong readout of residues between G33 (-3) and P38 (+2) on H3K36. Unexpectedly, we observe that amino acid residues different from natural ones in H3K36 are preferred at some positions. Combining four preferred residues led to the development of a super-substrate which is methylated much faster by NSD2 at peptide and protein level. Molecular dynamics simulations demonstrate that this activity increase is caused by distinct hyperactive conformations of the enzyme-peptide complex. To investigate the substrate spectrum of NSD2, we conducted a proteome wide search for nuclear proteins matching the specificity profile and discovered 22 peptide substrates of NSD2. In protein methylation studies, we identify K1033 of ATRX and K819 of FANCM as NSD2 methylation sites and also demonstrate their methylation in human cells. Both these proteins have important roles in DNA repair strengthening the connection of NSD2 and H3K36 methylation to DNA repair.


Subject(s)
Histone-Lysine N-Methyltransferase , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Substrate Specificity , Methylation , Molecular Dynamics Simulation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/chemistry , Histones/metabolism , Histones/chemistry , Histones/genetics , Peptides/metabolism , Peptides/chemistry
6.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892133

ABSTRACT

Histones are keys to many epigenetic events and their complexes have therapeutic and diagnostic importance. The determination of the structures of histone complexes is fundamental in the design of new drugs. Computational molecular docking is widely used for the prediction of target-ligand complexes. Large, linear peptides like the tail regions of histones are challenging ligands for docking due to their large conformational flexibility, extensive hydration, and weak interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods often fail to produce complex structures of such peptide ligands at a level appropriate for drug design. To address this challenge, and improve the structural quality of the docked complexes, post-docking refinement has been applied using various molecular dynamics (MD) approaches. However, a final consensus has not been reached on the desired MD refinement protocol. In this present study, MD refinement strategies were systematically explored on a set of problematic complexes of histone peptide ligands with relatively large errors in their docked geometries. Six protocols were compared that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol achieved a median of 32% improvement over the docked structures in terms of the change in root mean squared deviations from the experimental references. The influence of structural factors and explicit hydration on the performance of post-docking MD refinements are also discussed to help with their implementation in future methods and applications.


Subject(s)
Histones , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides , Histones/chemistry , Histones/metabolism , Peptides/chemistry , Ligands , Protein Binding , Binding Sites , Protein Conformation , Humans
7.
ACS Chem Biol ; 19(6): 1376-1386, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38829775

ABSTRACT

Histone lysine acetylation (Kac) and crotonylation (Kcr) marks mediate the recruitment of YEATS domains to chromatin. In this way, YEATS domain-containing proteins such as AF9 participate in the regulation of DNA-templated processes. Our previous study showed that the replacement of Kac/Kcr by a 2-furancarbonyllysine (Kfu) residue led to greatly enhanced affinity toward the AF9 YEATS domain, rendering Kfu-containing peptides useful chemical tools to probe the AF9 YEATS-Kac/Kcr interactions. Here, we report the genetic incorporation of Kfu in Escherichia coli and mammalian cells through the amber codon suppression technology. We develop a Kfu-containing epitope tag, termed RAY-tag, which can robustly and selectively engage with the AF9 YEATS domain in vitro and in cellulo. We further demonstrate that the fusion of RAY-tag to different protein modules, including fluorescent proteins and DNA binding proteins, can facilitate the interrogation of the histone lysine acylation-mediated recruitment of the AF9 YEATS domain in different biological contexts.


Subject(s)
Epitopes , Lysine , Lysine/metabolism , Lysine/chemistry , Acylation , Humans , Epitopes/metabolism , Epitopes/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Histones/metabolism , Histones/chemistry , Histones/genetics , Protein Binding , Acetylation
8.
Nature ; 630(8016): 466-474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839952

ABSTRACT

Histone acetylation regulates gene expression, cell function and cell fate1. Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid ß-oxidation, which is also increased in the rim. Inhibition of fatty acid ß-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression.


Subject(s)
Acetyl Coenzyme A , Cell Nucleus , Chromatin , Drosophila melanogaster , Animals , Acetate-CoA Ligase/metabolism , Acetyl Coenzyme A/metabolism , Acetylation , Biological Transport , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Gene Expression Regulation , Histones/chemistry , Histones/metabolism , Imaginal Discs/cytology , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Lysine/metabolism , Oxidation-Reduction , Wings, Animal/cytology , Wings, Animal/growth & development , Wings, Animal/metabolism
9.
Int J Biol Macromol ; 272(Pt 1): 132869, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838895

ABSTRACT

Repurposing discarded cells stands as a groundbreaking paradigm shift in sustainable biotechnology, with profound implications across diverse industrial sectors. Our study proposes a transformative concept by harnessing histone proteins from discarded CHO cells to produce bioactive peptides. We systematically isolated and hydrolyzed histones using Trypsin and Neutrase enzymes, optimizing reaction conditions. Ultrafiltration yielded distinct peptide fractions (<3 kDa and 3-10 kDa), which we analyzed for DPP-IV inhibition, antioxidant potential, and other activities. Furthermore, LC-Q-TOF-MS analysis and in silico tools unveiled the structural composition of bioactive peptides within these fractions. Three peptide sequences with high bioactivity potential were identified: KLPFQR, VNRFLR, and LSSCAPVFL. Our findings demonstrated exceptional DPP-IV inhibition, potent antioxidant effects, and effective anti-lipid peroxidation activities, surpassing reference compounds. Hemolytic activity assessment indicated promising biocompatibility, enhancing therapeutic application prospects. Pioneering the strategic repurposing of discarded cells, this research addresses cost-efficiency in cell-based studies and promotes sustainable use of biological resources across sectors. This novel approach offers an efficient, eco-friendly method for bioactive molecule procurement and resource management, revolutionizing cell culture studies and biotechnological applications.


Subject(s)
Biotechnology , Cricetulus , Peptides , CHO Cells , Animals , Peptides/chemistry , Peptides/pharmacology , Biotechnology/methods , Antioxidants/pharmacology , Antioxidants/chemistry , Histones/metabolism , Histones/chemistry , Amino Acid Sequence , Hemolysis/drug effects
10.
Chem Biol Interact ; 398: 111095, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844256

ABSTRACT

It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.


Subject(s)
Histones , Organophosphorus Compounds , Pesticides , Histones/metabolism , Histones/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/toxicity , Animals , Pesticides/chemistry , Pesticides/metabolism , Pesticides/toxicity , Cattle , Methylation , Malathion/chemistry , Malathion/metabolism , Malathion/toxicity , Proteomics , Flame Retardants/toxicity , Flame Retardants/metabolism , Amino Acid Sequence , Dichlorvos/chemistry , Dichlorvos/toxicity
11.
J Chem Inf Model ; 64(12): 4709-4726, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38865599

ABSTRACT

Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.


Subject(s)
DNA , Histones , Molecular Dynamics Simulation , Nucleosomes , Histones/chemistry , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , DNA/chemistry , DNA/metabolism , Acetylation , Protein Conformation , Principal Component Analysis
12.
Langmuir ; 40(26): 13505-13514, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38896798

ABSTRACT

Development of an energy-driven self-assembly process is a matter of interest for understanding and mimicking diverse ranges of biological and environmental patterns in a synthetic system. In this article, first we demonstrate transient and temporally controlled self-assembly of a DNA-histone condensate where trypsin (already present in the system) hydrolyzes histone, resulting in disassembly. Upon performing this dynamic self-assembly process in a gel matrix under an electric field, we observe diverse kinds of DNA patterning across the gel matrix depending on the amount of trypsin, incubation time of the reaction mixture, and gel porosity. Notably, here, the micrometer-sized DNA-histone condensate does not move through the gel and only free DNA can pass; therefore, transport and accumulation of DNA at different zones depend on the release rate of DNA by trypsin. Furthermore, we show that the viscoelasticity of the native gel increases in the presence of DNA and a pattern over gel viscoelasticity at different zones can be achieved by tuning the amount of enzyme, i.e., the dissociation rate of the DNA-histone condensate. We believe enabling spatiotemporally controlled DNA patterning by applying an electric field will be potentially important in designing different kinds of spatiotemporally distinct dynamic materials.


Subject(s)
DNA , Elasticity , Histones , Hydrogels , Trypsin , DNA/chemistry , Histones/chemistry , Histones/metabolism , Trypsin/chemistry , Trypsin/metabolism , Hydrogels/chemistry , Viscosity , Electrophoresis
13.
Phys Rev E ; 109(5-1): 054411, 2024 May.
Article in English | MEDLINE | ID: mdl-38907407

ABSTRACT

Genomic regions can acquire heritable epigenetic states through unique histone modifications, which lead to stable gene expression patterns without altering the underlying DNA sequence. However, the relationship between chromatin conformational dynamics and epigenetic stability is poorly understood. In this paper, we propose kinetic models to investigate the dynamic fluctuations of histone modifications and the spatial interactions between nucleosomes. Our model explicitly incorporates the influence of chemical modifications on the structural stability of chromatin and the contribution of chromatin contacts to the cooperative nature of chemical reactions. Through stochastic simulations and analytical theory, we have discovered distinct steady-state outcomes in different kinetic regimes, resembling a dynamical phase transition. Importantly, we have validated that the emergence of this transition, which occurs on biologically relevant timescales, is robust against variations in model design and parameters. Our findings suggest that the viscoelastic properties of chromatin and the timescale at which it transitions from a gel-like to a liquidlike state significantly impact dynamic processes that occur along the one-dimensional DNA sequence.


Subject(s)
Chromatin , Histones , Chromatin/metabolism , Chromatin/chemistry , Histones/metabolism , Histones/chemistry , Models, Molecular , Phase Transition , Kinetics , Nucleosomes/metabolism , Nucleosomes/chemistry , DNA/metabolism , DNA/chemistry , Stochastic Processes
14.
J Biomed Opt ; 29(6): 066501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38799979

ABSTRACT

Significance: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale. Aim: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data. Approach: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler. Results: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging. Conclusions: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.


Subject(s)
Deep Learning , Single Molecule Imaging , Animals , Single Molecule Imaging/methods , Humans , Chlorocebus aethiops , COS Cells , Microscopy, Fluorescence/methods , Image Processing, Computer-Assisted/methods , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/analysis , Algorithms , Histones/chemistry , Histones/analysis
15.
Nat Struct Mol Biol ; 31(5): 742-746, 2024 May.
Article in English | MEDLINE | ID: mdl-38769465

ABSTRACT

Hexasomes are non-canonical nucleosomes that package DNA with six instead of eight histones. First discovered 40 years ago as a consequence of transcription, two near-atomic-resolution cryo-EM structures of the hexasome in complex with the chromatin remodeler INO80 have now started to unravel its mechanistic impact on the regulatory landscape of chromatin. Loss of one histone H2A-H2B dimer converts inactive nucleosomes into distinct and favorable substrates for ATP-dependent chromatin remodeling.


Subject(s)
Chromatin Assembly and Disassembly , Cryoelectron Microscopy , Histones , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Histones/metabolism , Histones/chemistry , Models, Molecular , Humans , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , DNA/metabolism , DNA/chemistry
16.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733345

ABSTRACT

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Subject(s)
ATPases Associated with Diverse Cellular Activities , DNA-Binding Proteins , Histones , Lysine , Histones/metabolism , Histones/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Lysine/metabolism , Lysine/chemistry , Acetylation , Protein Processing, Post-Translational , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Protein Binding , Protein Domains , Models, Molecular , Binding Sites
17.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38809771

ABSTRACT

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Subject(s)
Adenosine Triphosphatases , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly , Protein Binding , Protein Multimerization
18.
Nat Commun ; 15(1): 4395, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782894

ABSTRACT

The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation. Under these conditions, the arrays exhibite irregular zig-zag conformations with loose packing. Increasing the ionic strength promoted intra-array compaction, yet we do not observe the previously reported regular 30-nanometer fibers. Interestingly, the presence of H1 do not induce array compaction; instead, one-third of the arrays display nucleosomes invaded by foreign DNA, suggesting an alternative role for H1 in chromatin network construction. We also find that the crucial parameter determining the structure adopted by chromatin arrays is the angle between the entry and exit of the DNA and the corresponding tangents to the nucleosomal disc. Our results provide insights into the initial stages of intra-array compaction, a critical precursor to condensation in the regulation of chromatin organization.


Subject(s)
DNA , Electron Microscope Tomography , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleosomes/chemistry , Electron Microscope Tomography/methods , DNA/chemistry , DNA/metabolism , Cryoelectron Microscopy/methods , Nucleic Acid Conformation , Chromatin/chemistry , Chromatin/ultrastructure , Chromatin/metabolism , Histones/metabolism , Histones/chemistry , Osmolar Concentration , Animals
19.
Nat Microbiol ; 9(7): 1713-1724, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806669

ABSTRACT

Nucleosomes are DNA-protein complexes composed of histone proteins that form the basis of eukaryotic chromatin. The nucleosome was a key innovation during eukaryotic evolution, but its origin from histone homologues in Archaea remains unclear. Viral histone repeats, consisting of multiple histone paralogues within a single protein, may reflect an intermediate state. Here we examine the diversity of histones encoded by Nucleocytoviricota viruses. We identified 258 histones from 168 viral metagenomes with variable domain configurations including histone singlets, doublets, triplets and quadruplets, the latter comprising the four core histones arranged in series. Viral histone repeats branch phylogenetically between Archaea and eukaryotes and display intermediate functions in Escherichia coli, self-assembling into eukaryotic-like nucleosomes that stack into archaeal-like oligomers capable of impacting genomic activity and condensing DNA. Histone linkage also facilitates nucleosome formation, promoting eukaryotic histone assembly in E. coli. These data support the hypothesis that viral histone repeats originated in stem-eukaryotes and that nucleosome evolution proceeded through histone repeat intermediates.


Subject(s)
Archaea , Escherichia coli , Evolution, Molecular , Histones , Nucleosomes , Phylogeny , Nucleosomes/metabolism , Nucleosomes/genetics , Histones/metabolism , Histones/genetics , Histones/chemistry , Archaea/genetics , Archaea/virology , Archaea/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Eukaryota/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Metagenome
20.
Histochem Cell Biol ; 162(1-2): 23-40, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743310

ABSTRACT

Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs) with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.


Subject(s)
Euchromatin , Histones , Mutation , Nucleosomes , Humans , Nucleosomes/metabolism , Nucleosomes/chemistry , Histones/metabolism , Histones/chemistry , HeLa Cells , Euchromatin/metabolism , Euchromatin/chemistry , Acetylation
SELECTION OF CITATIONS
SEARCH DETAIL
...