Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75.021
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125824

ABSTRACT

The study presents a thorough and detailed analysis of bicalutamide's structural and conformational properties. Quantum chemical calculations were employed to explore the conformational properties of the molecule, identifying significant energy differences between conformers. Analysis revealed that hydrogen bonds stabilise the conformers, with notable variations in torsion angles. Conformers were classified into 'closed' and 'open' types based on the relative orientation of the cyclic fragments. NOE spectroscopy in different solvents (CDCl3 and DMSO-d6) was used to study the conformational preferences of the molecule. NOESY experiments provided the predominance of 'closed' conformers in non-polar solvents and a significant presence of 'open' conformers in polar solvents. The proportions of open conformers were 22.7 ± 3.7% in CDCl3 and 59.8 ± 6.2% in DMSO-d6, while closed conformers accounted for 77.3 ± 3.7% and 40.2 ± 6.2%, respectively. This comprehensive study underscores the solvent environment's impact on its structural behaviour. The findings significantly contribute to a deeper understanding of conformational dynamics, stimulating further exploration in drug development.


Subject(s)
Anilides , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Conformation , Nitriles , Solvents , Tosyl Compounds , Anilides/chemistry , Tosyl Compounds/chemistry , Solvents/chemistry , Nitriles/chemistry , Magnetic Resonance Spectroscopy/methods , Quantum Theory , Models, Molecular , Solutions
2.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125837

ABSTRACT

In this work, the conformational behaviors of ring polyelectrolyte in tetravalent salt solutions are discussed in detail through molecular dynamics simulation. For simplification, here we have neglected the effect of the twisting interaction, although it has been well known that both bending and twisting interactions play a deterministic in the steric conformation of a semiflexible ring polymer. The salt concentration CS and the bending energy b take a decisive role in the conformation of the ring polyelectrolyte (PE). Throughout our calculations, the b varies from b = 0 (freely joint chain) to b = 120. The salt concentration CS changes in the range of 3.56 × 10-4 M ≤ CS ≤ 2.49 × 10-1 M. Upon the addition of salt, ring PE contracts at first, subsequently re-expands. More abundant conformations are observed for a semiflexible ring PE. For b = 10, the conformation of semiflexible ring PE shifts from the loop to two-racquet-head spindle, then it condenses into toroid, finally arranges into coil with the increase of CS. As b increases further, four phase transitions are observed. The latter two phase transitions are different. The semiflexible ring PE experiences transformation from toroid to two racquet head spindle, finally to loop in the latter two phase transitions. Its conformation is determined by the competition among the bending energy, cation-bridge, and entropy. Combined, our findings indicate that the conformations of semiflexible ring PE can be controlled by changing the salt concentration and chain stiffness.


Subject(s)
Molecular Conformation , Molecular Dynamics Simulation , Polyelectrolytes , Salts , Polyelectrolytes/chemistry , Salts/chemistry , Solutions
3.
Anal Chim Acta ; 1320: 342994, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142778

ABSTRACT

Organic emitters with exceptional properties exhibit significant potential in the field of aggregation-induced electrochemiluminescence (AIECL); however, their practicality is impeded by limited ECL efficiency (ΦECL). This paper investigates a novel type of AIECL emitter (BDPPA NPs), where an efficient intramolecular charge transfer (ICT) effect and highly twisted conformation contribute to a remarkable enhancement of ECL. The ICT effect reduces the electron transfer path, while the twisted conformation effectively restricts π-π stacking and intramolecular motions. Intriguingly, compared to the standard system of [Ru(bpy)32+]/TPrA, bright emissions with up to 54 % ΦECL were achieved, enabling direct visual observation of ECL through the co-reactant route. The label-free immunosensor exhibited distinguished performance in detecting SARS-CoV-2 N protein across an exceptionally wide linear range of 0.001-500 ng mL-1, with a remarkably low detection limit of 0.28 pg mL-1. Furthermore, this developed ECL platform exhibited excellent sensitivity, specificity, and stability characteristics, providing an efficient avenue for constructing platforms for bioanalysis and clinical diagnosis analysis.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , SARS-CoV-2 , Immunoassay/methods , Luminescent Measurements/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Humans , Limit of Detection , COVID-19/diagnosis , COVID-19/virology , Molecular Conformation , Biosensing Techniques/methods
4.
J Comput Aided Mol Des ; 38(1): 26, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052103

ABSTRACT

Nonadditivity (NA) in Structure-Activity and Structure-Property Relationship (SAR) data is a rare but very information rich phenomenon. It can indicate conformational flexibility, structural rearrangements, and errors in assay results and structural assignment. While purely ligand-based conformational causes of NA are rather well understood and mundane, other factors are less so and cause surprising NA that has a huge influence on SAR analysis and ML model performance. We here report a systematic analysis across a wide range of properties (20 on-target biological activities and 4 physicochemical ADME-related properties) to understand the frequency of various different phenomena that may lead to NA. A set of novel descriptors were developed to characterize double transformation cycles and identify trends in NA. Double transformation cycles were classified into "surprising" and "mundane" categories, with the majority being classed as mundane. We also examined commonalities among surprising cycles, finding LogP differences to have the most significant impact on NA. A distinct behavior of NA for on-target sets compared to ADME sets was observed. Finally, we show that machine learning models struggle with highly nonadditive data, indicating that a better understanding of NA is an important future research direction.


Subject(s)
Machine Learning , Structure-Activity Relationship , Humans , Ligands , Drug Discovery/methods , Molecular Conformation
5.
J Chem Inf Model ; 64(14): 5604-5616, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38980812

ABSTRACT

Organic(porous) and metal-organic cages are promising biomimetic platforms with diverse applications spanning recognition, sensing, and catalysis. The key to the emergence of these functions is the presence of well-defined inner cavities capable of binding a wide range of guest molecules and modulating their properties. However, despite the myriad cage architectures currently available, the rational design of structurally diverse and functional cages with specific host-guest properties remains challenging. Efficiently predicting such properties is critical for accelerating the discovery of novel functional cages. Herein, we introduce CageCavityCalc (C3), a Python-based tool for calculating the cavity size of molecular cages. The code is available on GitHub at https://github.com/VicenteMartiCentelles/CageCavityCalc. C3 utilizes a novel algorithm that enables the rapid calculation of cavity sizes for a wide range of molecular structures and porous systems. Moreover, C3 facilitates easy visualization of the computed cavity size alongside hydrophobic and electrostatic potentials, providing insights into host-guest interactions within the cage. Furthermore, the calculated cavity can be visualized using widely available visualization software, such as PyMol, VMD, or ChimeraX. To enhance user accessibility, a PyMol plugin has been created, allowing nonspecialists to use this tool without requiring computer programming expertise. We anticipate that the deployment of this computational tool will significantly streamline cage cavity calculations, thereby accelerating the discovery of functional cages.


Subject(s)
Software , Models, Molecular , Algorithms , Porosity , Molecular Conformation
6.
J Phys Chem A ; 128(28): 5578-5585, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38981061

ABSTRACT

A combination of experimental measurements and molecular dynamics (MD) simulations was used to investigate how the surfaces of single-wall carbon nanotubes (SWCNTs) are covered by adsorbed ssDNA oligos with different base compositions and lengths. By analyzing the UV absorption spectra of ssDNA-coated SWCNTs before and after coating displacement by a transparent surfactant, the mass ratios of adsorbed ssDNA to SWCNTs were determined for poly-T, poly-C, GT-containing, and AT-containing ssDNA oligos. Based on the measured mass ratios, it is estimated that an average of 20, 22, 26, or 32 carbon atoms are covered by one adsorbed thymine, cytosine, adenine, or guanine nucleotide, respectively. In addition, the UV spectra revealed electronic interactions of varying strengths between the nucleobase aromatic rings and the nanotube π-systems. Short poly-T DNA oligos show stronger π-π stacking interactions with SWCNT surfaces than do short poly-C DNA oligos, whereas both long poly-C and poly-T DNA oligos show strong interactions. These experiments were complemented by MD computations on simulated systems that were constrained to match the measured ssDNA/SWCNT mass ratios. The surface coverages computed from the MD results varied with oligo composition in a pattern that correlates higher measured yields of nanotube fluorescence with greater surface coverage.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , DNA, Single-Stranded/chemistry , Surface Properties , Models, Molecular , Molecular Conformation , Spectrophotometry , Computer Simulation
7.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38990515

ABSTRACT

Accurate prediction of molecular properties is fundamental in drug discovery and development, providing crucial guidance for effective drug design. A critical factor in achieving accurate molecular property prediction lies in the appropriate representation of molecular structures. Presently, prevalent deep learning-based molecular representations rely on 2D structure information as the primary molecular representation, often overlooking essential three-dimensional (3D) conformational information due to the inherent limitations of 2D structures in conveying atomic spatial relationships. In this study, we propose employing the Gram matrix as a condensed representation of 3D molecular structures and for efficient pretraining objectives. Subsequently, we leverage this matrix to construct a novel molecular representation model, Pre-GTM, which inherently encapsulates 3D information. The model accurately predicts the 3D structure of a molecule by estimating the Gram matrix. Our findings demonstrate that Pre-GTM model outperforms the baseline Graphormer model and other pretrained models in the QM9 and MoleculeNet quantitative property prediction task. The integration of the Gram matrix as a condensed representation of 3D molecular structure, incorporated into the Pre-GTM model, opens up promising avenues for its potential application across various domains of molecular research, including drug design, materials science, and chemical engineering.


Subject(s)
Molecular Conformation , Models, Molecular , Drug Design , Deep Learning , Drug Discovery , Algorithms
8.
Sci Data ; 11(1): 742, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972891

ABSTRACT

We here introduce the Aquamarine (AQM) dataset, an extensive quantum-mechanical (QM) dataset that contains the structural and electronic information of 59,783 low-and high-energy conformers of 1,653 molecules with a total number of atoms ranging from 2 to 92 (mean: 50.9), and containing up to 54 (mean: 28.2) non-hydrogen atoms. To gain insights into the solvent effects as well as collective dispersion interactions for drug-like molecules, we have performed QM calculations supplemented with a treatment of many-body dispersion (MBD) interactions of structures and properties in the gas phase and implicit water. Thus, AQM contains over 40 global and local physicochemical properties (including ground-state and response properties) per conformer computed at the tightly converged PBE0+MBD level of theory for gas-phase molecules, whereas PBE0+MBD with the modified Poisson-Boltzmann (MPB) model of water was used for solvated molecules. By addressing both molecule-solvent and dispersion interactions, AQM dataset can serve as a challenging benchmark for state-of-the-art machine learning methods for property modeling and de novo generation of large (solvated) molecules with pharmaceutical and biological relevance.


Subject(s)
Quantum Theory , Solvents , Solvents/chemistry , Pharmaceutical Preparations/chemistry , Water/chemistry , Molecular Conformation
9.
Int J Biol Macromol ; 275(Pt 1): 133643, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964680

ABSTRACT

In this study, the effects of different ultrasonic treatment intensities (57, 170, and 283 W/cm2) on the chemical composition, molecular chain characteristics, crystal structure, micromorphology, interfacial adsorption behavior and emulsifying properties of sugar beet pectin (SBP) were investigated. Ultrasonic treatment did not change the types of SBP monosaccharides, but it had impacts on their various monosaccharide contents. Moreover, the feruloylated, acetyl, and methoxy groups of SBP also undergo varying degrees of changes. The increase in ultrasonic treatment intensity led to transition in the molecular chain conformation of SBP from rigid semi-flexible chains to flexible chains, accompanied by modification in its crystal structure. Microstructural analysis of SBP confirmed the significant change in molecular chain conformation. Modified SBP could form an elastic interfacial film with higher deformation resistance on the oil-water interface. The SBP sample modified with 170 W/cm2 exhibited better emulsifying properties owing to its better interfacial adsorption behavior. Moreover, the emulsions prepared with modified SBP exhibited better stability capability under different environmental stresses (pH value, salt ion concentration, heating temperature and freeze-thaw treatment). The results revealed that the ultrasonic technology is useful to improve the emulsifying properties of SBP.


Subject(s)
Beta vulgaris , Pectins , Beta vulgaris/chemistry , Pectins/chemistry , Emulsions/chemistry , Ultrasonic Waves , Adsorption , Molecular Conformation , Hydrogen-Ion Concentration
10.
J Chem Inf Model ; 64(14): 5535-5546, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38962905

ABSTRACT

For quickly predicting the rational arrangement of catalysts and substrates, we previously proposed a method to calculate the interacted volumes of molecules over their 3D point cloud models. However, the nonuniform density in molecular point clouds may lead to incomplete contours in some slices, reducing the accuracy of the previous method. In this paper, we propose a two-step method for more accurately computing molecular interacted volumes. First, by employing a prematched mesh slicing method, we layer the 3D triangular mesh models of the electrostatic potential isosurfaces of two molecules globally, transforming the volume calculation into finding the intersecting areas in each layer. Next, by subdividing polygonal edges, we accurately identify intersecting parts within each layer, ensuring precise calculation of interacted volumes. In addition, we present a concise overview for computing intersecting areas in cases of multiple contour intersections and for improving computational efficiency by incorporating bounding boxes at three stages. Experimental results demonstrate that our method maintains high accuracy in different experimental data sets, with an average relative error of 0.16%. On the same experimental setup, our average relative error is 0.07%, which is lower than the previous algorithm's 1.73%, improving the accuracy and stability in calculating interacted volumes.


Subject(s)
Models, Molecular , Static Electricity , Algorithms , Molecular Conformation , Catalysis
11.
Phytochemistry ; 226: 114223, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032793

ABSTRACT

Eight undescribed guaianolide sesquiterpene lactones cicholosumins A-H and twelve known ones were isolated from the aerial parts of Cichorium glandulosum Boiss et Huet. Their structures were established by 1D and 2D NMR spectroscopic data, electronic circular dichroism, quantum chemical calculations and single crystal X-ray diffraction analysis. Compounds 9α-hydroxy-3-deoxyzaluzanin C, epi-8α-angeloyloxycichoralexin, 8-O-methylsenecioylaustricin and lactucin showed strong anti-neuroinflammation activity with IC50 values of 1.69 ± 0.11, 1.08 ± 0.23, 1.67 ± 0.28 and 1.82 ± 0.27 µM, respectively. The mechanism research indicated that epi-8α-angeloyloxycichoralexin inhibited neuroinflammation through the NF-κB and MAPK pathways.


Subject(s)
Lactones , Lactones/pharmacology , Lactones/chemistry , Lactones/isolation & purification , Molecular Structure , Sesquiterpenes, Guaiane/chemistry , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes, Guaiane/isolation & purification , Asteraceae/chemistry , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Conformation , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Plant Components, Aerial/chemistry , Mice , Neuroinflammatory Diseases/drug therapy
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124737, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38963946

ABSTRACT

The molecule of 2-Biphenyl Carboxylic Acid (2BCA), which contains peculiar features, was explored making use of density functional theory (DFT) and experimental approaches in the area of quantum computational research. The optimised structure, atomic charges, vibrational frequencies, electrical properties, electrostatic potential surface (ESP), natural bond orbital analysis and potential energy surface (PES) were obtained applying the B3LYP approach with the 6-311++ G (d,p) basis set.. The 2BCA molecule was examined for possible conformers using a PES scan. The methods applied for spectral analyses included FT-IR, FT-RAMAN, NMR, and UV-Vis results. Vibrational frequencies for all typical modes of vibration were found using the Potential Energy Distribution (PED) data. The UV-Vis spectrum was simulated using the TD-DFT technique, which is also seen empirically. The Gauge-Invariant Atomic Orbital (GIAO) approach was employed to model and study the 13C and 1H NMR spectra of the 2BCA molecule in a CDCL3 solution. The spectra were then exploited experimentally to establish their chemical shifts. To predict the donor and acceptor interaction, the NBO analysis was used. The electrostatic potential surface was employed to anticipate the locations of nucleophilic and electrophilic sites. Hirshfeld surfaces and their related fingerprint plots are exploited for the investigation of intermolecular interactions. Reduced Density Gradient (RDG) helps to measure and illustrate electron correlation effects, offering precise insights into chemical bonding, reactivity, and the electronic structure of 2BCA. According to Lipinski and Veber's drug similarity criteria, 2BCA exhibits the typical physicochemical and pharmacokinetic properties that make it a potential oral pharmaceutical candidate. According to the findings of a molecular docking study, the 2BCA molecule has promise as a treatment agent for the Nipah virus (PDB ID: 6 EB9), which causes severe respiratory and neurological symptoms in humans.


Subject(s)
Nipah Virus , Spectrum Analysis, Raman , Static Electricity , Spectroscopy, Fourier Transform Infrared/methods , Nipah Virus/chemistry , Nipah Virus/drug effects , Nipah Virus/metabolism , Spectrum Analysis, Raman/methods , Viral Proteins/chemistry , Viral Proteins/metabolism , Protein Binding , Molecular Docking Simulation , Density Functional Theory , Spectrophotometry, Ultraviolet , Magnetic Resonance Spectroscopy , Models, Molecular , Vibration , Molecular Conformation , Carboxylic Acids/chemistry
13.
J Phys Chem B ; 128(30): 7362-7375, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39031121

ABSTRACT

In the domain of computer-aided drug design, achieving precise and accurate estimates of ligand-protein binding is paramount in the context of screening extensive drug libraries and performing ligand optimization. A fundamental aspect of the SILCS (site identification by ligand competitive saturation) methodology lies in the generation of comprehensive 3D free-energy functional group affinity maps (FragMaps), encompassing the entirety of the target molecule structure. These FragMaps offer an intricate landscape of functional group affinities across the protein, bilayer, or RNA, acting as the basis for subsequent SILCS-Monte Carlo (MC) simulations wherein ligands are docked to the target molecule. To augment the efficiency and breadth of ligand sampling capabilities, we implemented an improved SILCS-MC methodology. By harnessing the parallel computing capability of GPUs, our approach facilitates concurrent calculations over multiple ligands and binding sites, markedly enhancing the computational efficiency. Moreover, the integration of a genetic algorithm (GA) with MC allows us to employ an evolutionary approach to perform ligand sampling, assuring enhanced convergence characteristics. In addition, the potential utility of parallel tempering (PT) to improve sampling was investigated. Implementation of SILCS-MC on GPU architecture is shown to accelerate the speed of SILCS-MC calculations by over 2-orders of magnitude. Use of GA and PT yield improvements over Markov-chain MC, increasing the precision of the resultant docked orientations and binding free energies, though the extent of improvements is relatively small. Accordingly, significant improvements in speed are obtained through the GPU implementation with minor improvements in the precision of the docking obtained via the tested GA and PT algorithms.


Subject(s)
Algorithms , Monte Carlo Method , Ligands , Molecular Conformation , Thermodynamics , Molecular Docking Simulation , Proteins/chemistry , Proteins/metabolism , Computer Graphics
14.
J Mol Graph Model ; 131: 108814, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968767

ABSTRACT

The synthesis of two pyrazolone derivative compounds, PYR-I(4-Acetyl-1-(4-chlorophenyl)-3-isopropyl-1H-pyrazol-5(4H)-one) and PYR-II1-(4-Chlorophenyl))-3-isopropyl-5-oxo-4,5-5-dihydro-1H-pyrazole-4-carbaldehyde, their characterization by FT-IR, NMR, UV-Vis and GC-MS techniques, and the evaluation of the keto-enol tautomerization process of the structures along with the DFT approach and spectral data were reported in this paper. Spectral findings indicated that PYR-I was stable at the keto state. The IR spectrum recorded in solid form showed that the PYR-II structure was stable in the enol state, while the NMR spectrum in the solution medium showed that it was stable in the keto state. DFT-based analyses were realized with the B3LYP hybrid functional and the 6-311++G(d,p) basis set. The modelled keto, transition and enol state molecular geometries of structures were optimized in the gas phase and different solvent media and the total energy and dipole moment values were investigated at the specified theoretical level. The possible keto-enol tautomerism mechanism of the structures was evaluated through some thermodynamic parameters such as the difference in free Gibbs energy (ΔG), enthalpy (ΔH), entropy (ΔS), and predictive tautomeric equilibrium constants (Keq), acidity constants (pKa) and percentages of tautomers at 298.15 K and 1 atm pressure. The results of these analyses based on the DFT approach indicated that the keto-enol tautomer equilibrium heavily favours the keto form for PYR-I and the enol form for PYR-II in all cases. Moreover, natural bond orbital (NBO) analysis was performed for the tautomers, and the chemical reactivity profiles of the most stable tautomers were examined with the values of frontier molecular orbital energy and some reactivity descriptors.


Subject(s)
Density Functional Theory , Models, Molecular , Pyrazolones , Pyrazolones/chemistry , Molecular Structure , Spectroscopy, Fourier Transform Infrared/methods , Thermodynamics , Molecular Conformation , Magnetic Resonance Spectroscopy
15.
J Org Chem ; 89(14): 10027-10036, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38935812

ABSTRACT

A simple empirical method is described that allows the assignment of absolute configurations of natural products containing chiral vicinal bromochloro (VBC) units, including the bromochloro substituted isoprenyl units present in the structures of antiproliferative halomon (1a) and its halogen-swapped isomer iso-halomon (1b) from the red alga, Portieria hornemannii, and callophycols A (3) and B (4) from Callophycus serratus. The relative configurations of 3 and 4, published in 2007, were incomplete: C-16 was left unassigned. It is now shown that the additivity of molar rotations, [M]D (herein, abbreviated [M])─a consequence of van't Hoff's principle of optical superposition─could be used to deconvolute rotatory contributions, designated as [MX] and [MY] of the two remotely spaced chiral substructures within 3 and 4 using simple arithmetic. Input of proxy values, [M Y1] and [MY2], for the two different VBC units in two equations for [MX] and application of a "conditional test" returns the same value for [MX] only when a proxy with the correct configuration is included. It is revealed that 3 and 4 have opposite configurations at the C-16 stereocenter: 16S and 16R, respectively. Two important implications lie in these findings: 3 and 4 appear to qualify as paired-regioisomers, coupled through a putative dyotropic rearrangement (DR), and the biosyntheses of other Callophycus secondary metabolites, now numbering over 50, are tightly controlled by stereoelectronic considerations including neighboring group interactions of the DR. It now appears, counter to earlier suggestions, that the chirality of Callophycus secondary metabolites, despite their high chemodiversity, are surprisingly highly conserved. Enantiofacial halogenation additions to the C═C double bonds of precursor alkenes appear to direct the formation of the remaining stereocenters at both the halogenated benzoate-decalin core and the distal VBC of 3 and 4. A consistent hypothesis is proposed to account for macrolactonizations in other Callophycus natural products including bromophycolides A and B. The conditional test of molar rotations was applied in a different context to understand the chiroptical properties and trends observed in the highly iodinated meroditerpenes, iodocallophycols A-E, also from Callophycus sp., resulting in the revision of the configuration of callophycol E from (10R,14R) to (10S,14S).


Subject(s)
Biological Products , Biological Products/chemistry , Stereoisomerism , Molecular Structure , Molecular Conformation , Rhodophyta/chemistry
16.
J Med Chem ; 67(13): 11435-11449, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38889119

ABSTRACT

Enhancing the selectivity of alpha2-adrenoceptor (α2A-AR) agonists remains an unresolved issue. Herein, we reported the design of an α2A-AR agonist using the conformation constraint method, beginning with medetomidine. The structure-activity relationship indicated that the 8-substituent of chromane derivatives exerted the most pronounced effect on α2A-AR agonistic activity. Compounds A9 and B9 were identified as the most promising, exhibiting EC50 values of 0.78 and 0.23 nM, respectively. Their selectivity indexes surpassed dexmedetomidine (DMED) by 10-80 fold. In vivo studies demonstrated that both A9 and B9 dose-dependently increased the loss of righting reflex in mice, with ED50 values of 1.54 and 0.138 mg/kg, respectively. Binding mode calculations and mutation studies suggested the indispensability of the hydrogen bond between ASP1283.32 and α2A-AR agonist. In particular, A9 and B9 showed no dual reverse pharmacological effect, a characteristic exhibited by DMED in α2A-AR activation.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Chromans , Drug Design , Receptors, Adrenergic, alpha-2 , Animals , Receptors, Adrenergic, alpha-2/metabolism , Chromans/pharmacology , Chromans/chemistry , Chromans/chemical synthesis , Structure-Activity Relationship , Mice , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/chemistry , Humans , Molecular Conformation , Molecular Docking Simulation , Male
17.
Phytochemistry ; 225: 114185, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876164

ABSTRACT

Five undescribed leucosesterterpane sesterterpenoids, leucosceptrines A-E, two undescribed penta-nor-leucosesterterpane (C20) sesterterpenoids, nor-leucosceptrines A and B, and three known analogues, were obtained from the aerial parts of Leucosceptrum canum of Chinese origin. Leucosceptrines A-C are the first examples of leucosesterterpane-type sesterterpenoids with unclosed dihydropyran rings and reverse configurations at chiral centers C-4 and/or C-12. Nor-leucosceptrines A and B possesses an unusual penta-nor-leucosesterterpane skeleton. Their structures were unambiguously elucidated through comprehensive spectroscopic analyses and single-crystal X-ray diffraction. A plausible biogenetic pathway for these sesterterpenoids was proposed. The immunosuppressive effects of these isolates on the secretion of the cytokine IFN-γ by T cells stimulated with anti-CD3/CD28 monoclonal antibodies were observed with different potencies.


Subject(s)
Immunosuppressive Agents , Sesterterpenes , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Sesterterpenes/isolation & purification , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Molecular Structure , Humans , T-Lymphocytes/drug effects , Structure-Activity Relationship , Molecular Conformation , Interferon-gamma
18.
Phytochemistry ; 225: 114194, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897264

ABSTRACT

Ten undescribed diterpenoids (1-10) and three undescribed phenanthrene derivatives (11-13), together with seven known compounds, were isolated from the roots of Baliospermum solanifolium. Their structures were determined by a combination of spectroscopic data analysis, electronic circular dichroism calculations and single-crystal X-ray diffraction studies. Compounds 1-7 (baliosperoids A-G) represent the examples of 20-nor-ent-podocarpane class first discovered in nature. In particular, compound 7 possesses a unique 2,3-seco ring system incorporating γ-butanolide moiety. All isolates were assessed for their cytotoxic activities against HT-29, HCT-116, HCT-15, MCF-7, and A549 cell lines as well as their inhibitory effects on lipopolysaccharide-induced NO production in RAW264.7 cells. Compound 1, a 20-nor-ent-podocarpane-type diterpenoid possessing a Δ1,2 double bond, not only exhibited considerable proliferation inhibition against five human cancer cell lines, with IC50 values ranging from 4.13 to 23.45 µM, but also displayed the most potent inhibitory activity on NO production with IC50 value at the nanomolar level (0.63 ± 0.21 µM).


Subject(s)
Antineoplastic Agents, Phytogenic , Diterpenes , Drug Screening Assays, Antitumor , Nitric Oxide , Phenanthrenes , Plant Roots , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Humans , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/isolation & purification , Plant Roots/chemistry , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Animals , Molecular Structure , RAW 264.7 Cells , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Dose-Response Relationship, Drug , Molecular Conformation , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors
19.
Phytochemistry ; 225: 114199, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936531

ABSTRACT

Five undescribed atranones, namely atranones V-Z (1-5), three undescribed dolabellane-type diterpenoids, namely stachatranones D-F (7-9), together with four known congeners (6 and 10-12), were obtained from a coral-associated strain of the toxigenic fungus Stachybotrys chartarum. Their structures were elucidated via extensive spectroscopic analyses, mainly including the HRESIMS and NMR data, single-crystal X-ray diffraction analysis, electronic circular dichroism calculation, and [Mo2(OAc)4] induced circular dichroism spectrum. The cardiomyocyte protective activity assay revealed that compound 9 significantly ameliorated cold ischemic injury at 24 h post cold ischemia (CI) in a dose-dependent manner. Moreover, compound 9 prevented CI induced dephosphorylation of phosphatidylinositol-3-kinase and RAC-α serine/threonine-protein kinase at 12 h post CI in a dose-dependent manner. In this work, the undescribed compound 9 could significantly protect cardiomyocytes against cold ischemic injury, highlighting the promising potential to be designed and developed as a novel cardioprotectant in heart transplant medicine.


Subject(s)
Anthozoa , Diterpenes , Myocytes, Cardiac , Stachybotrys , Animals , Stachybotrys/chemistry , Anthozoa/microbiology , Anthozoa/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Myocytes, Cardiac/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Cold Temperature , Rats , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemistry , Cardiotonic Agents/isolation & purification , Molecular Conformation , Phosphatidylinositol 3-Kinases/metabolism
20.
Phytochemistry ; 225: 114201, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942106

ABSTRACT

Seven undescribed 3,4-secolanostane triterpenoids, daldiconoids A-G (1-7), were isolated from the fruiting bodies of Daldinia concentrica. Daldiconoid A (1) was a highly modified 4,6,28,29-tetranorlanostane triterpenoid alkaloid featuring an unusual δ-lactam fused with a flanking cyclopentenone architecture. Their structures were determined by spectroscopic data, NMR calculations coupled with the DP4+ analysis, X-ray single-crystal diffraction, and chemical transformation. The plausible biosynthetic pathway for 1 was proposed. Compounds 1, 2, and 4-6 inhibited the expressions of IL-1ß, IL-6, and TNF-α in lipopolysaccharide stimulated RAW264.7 cells at a concentration of 10 µM. Mechanistically, Compounds 1 and 2 blocked the JAK2/STAT3 signaling pathway induced by lipopolysaccharide.


Subject(s)
Fruiting Bodies, Fungal , Lipopolysaccharides , Triterpenes , Mice , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Animals , RAW 264.7 Cells , Fruiting Bodies, Fungal/chemistry , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Molecular Conformation , Structure-Activity Relationship , Dose-Response Relationship, Drug
SELECTION OF CITATIONS
SEARCH DETAIL