Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.168
Filter
1.
Antonie Van Leeuwenhoek ; 117(1): 92, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949726

ABSTRACT

Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.


Subject(s)
Nicotiana , Pest Control, Biological , Plant Diseases , Pseudomonas syringae , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nicotiana/microbiology , Pseudomonas syringae/physiology , Pest Control, Biological/methods , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Insecta/microbiology , Thysanoptera/microbiology , Disease Resistance , Plant Development , Biological Control Agents , Hemiptera/microbiology
2.
Multimedia | Multimedia Resources | ID: multimedia-13199

ABSTRACT

Dejar de fumar y vapear puede ser un proceso difícil, y a veces no es posible conseguirlo sin ayuda.


Subject(s)
Nicotiana , Vaping
3.
Mol Plant Pathol ; 25(6): e13488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924248

ABSTRACT

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.


Subject(s)
Nicotiana , Plant Immunity , Nicotiana/microbiology , Nicotiana/immunology , Nicotiana/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant
4.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822833

ABSTRACT

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Subject(s)
Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Saccharum , Salicylic Acid , Signal Transduction , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Saccharum/genetics , Saccharum/microbiology , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Plant Leaves/genetics , Plant Leaves/microbiology , Abscisic Acid/metabolism , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity
5.
Plant Cell Rep ; 43(6): 162, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837057

ABSTRACT

KEY MESSAGE: A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.


Subject(s)
Agrobacterium , Glycine max , Plant Leaves , Plants, Genetically Modified , Glycine max/genetics , Glycine max/microbiology , Glycine max/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Agrobacterium/genetics , Gene Expression Regulation, Plant , Nicotiana/genetics , Genetic Vectors/genetics
6.
Plant Physiol Biochem ; 212: 108782, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850728

ABSTRACT

Drought is a major environmental stress that limits plant growth, so it's important to identify drought-responsive genes to understand the mechanism of drought response and breed drought-tolerant roses. Protein phosphatase 2C (PP2C) plays a crucial role in plant abiotic stress response. In this study, we identified 412 putative PP2Cs from six Rosaceae species. These genes were divided into twelve clades, with clade A containing the largest number of PP2Cs (14.1%). Clade A PP2Cs are known for their important role in ABA-mediated drought stress response; therefore, the analysis focused on these specific genes. Conserved motif analysis revealed that clade A PP2Cs in these six Rosaceae species shared conserved C-terminal catalytic domains. Collinearity analysis indicated that segmental duplication events played a significant role in the evolution of clade A PP2Cs in Rosaceae. Analysis of the expression of 11 clade A RcPP2Cs showed that approximately 60% of these genes responded to drought, high temperature, and salt stress. Among them, RcPP2C24 exhibited the highest responsiveness to both drought and ABA. Furthermore, overexpression of RcPP2C24 significantly reduced drought tolerance in transgenic tobacco by increasing stomatal aperture after exposure to drought stress. The transient overexpression of RcPP2C24 weakened the dehydration tolerance of rose petal discs, while its silencing increased their dehydration tolerance. In summary, our study identified PP2Cs in six Rosaceae species and highlighted the negative role of RcPP2C24 on rose's drought tolerance by inhibiting stomatal closure. Our findings provide valuable insights into understanding the mechanism behind rose's response to drought.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Protein Phosphatase 2C , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Rosa/genetics , Rosa/enzymology , Rosa/metabolism , Plants, Genetically Modified , Rosaceae/genetics , Rosaceae/metabolism , Nicotiana/genetics , Nicotiana/physiology , Phylogeny , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Stress, Physiological/genetics , Dehydration/genetics , Drought Resistance
7.
Sci Rep ; 14(1): 13657, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871942

ABSTRACT

This work aimed to design a synthetic salt-inducible promoter using a cis-engineering approach. The designed promoter (PS) comprises a minimal promoter sequence for basal-level expression and upstream cis-regulatory elements (CREs) from promoters of salinity-stress-induced genes. The copy number, spacer lengths, and locations of CREs were manually determined based on their occurrence within native promoters. The initial activity profile of the synthesized PS promoter in transiently transformed N. tabacum leaves shows a seven-fold, five-fold, and four-fold increase in reporter GUS activity under salt, drought, and abscisic acid stress, respectively, at the 24-h interval, compared to the constitutive CaMV35S promoter. Analysis of gus expression in stable Arabidopsis transformants showed that the PS promoter induces over a two-fold increase in expression under drought or abscisic acid stress and a five-fold increase under salt stress at 24- and 48-h intervals, compared to the CaMV35S promoter. The promoter PS exhibits higher and more sustained activity under salt, drought, and abscisic acid stress compared to the constitutive CaMV35S.


Subject(s)
Abscisic Acid , Arabidopsis , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Arabidopsis/genetics , Abscisic Acid/pharmacology , Plants, Genetically Modified/genetics , Droughts , Nicotiana/genetics , Stress, Physiological/genetics , Sodium Chloride/pharmacology , Genetic Engineering/methods , Salt Stress/genetics
8.
BMC Plant Biol ; 24(1): 541, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872084

ABSTRACT

BACKGROUND: The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS: By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Nicotiana , Trichomes , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891808

ABSTRACT

AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Salt Stress/genetics , Stress, Physiological/genetics , Arecaceae/genetics , Arecaceae/metabolism , Germination/genetics
10.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892274

ABSTRACT

Heavy metals are dangerous contaminants that constitute a threat to human health because they persist in soils and are easily transferred into the food chain, causing damage to human health. Among heavy metals, nickel appears to be one of the most dangerous, being responsible for different disorders. Public health protection requires nickel detection in the environment and food chains. Biosensors represent simple, rapid, and sensitive methods for detecting nickel contamination. In this paper, we report on the setting up a whole-cell-based system, in which protoplasts, obtained from Nicotiana tabacum leaves, were used as transducers to detect the presence of heavy metal ions and, in particular, nickel ions. Protoplasts were genetically modified with a plasmid containing the Green Fluorescent Protein reporter gene (GFP) under control of the promoter region of a sunflower gene coding for a small Heat Shock Protein (HSP). Using this device, the presence of heavy metal ions was detected. Thus, the possibility of using this whole-cell system as a novel tool to detect the presence of nickel ions in food matrices was assessed.


Subject(s)
Biosensing Techniques , Nickel , Nicotiana , Protoplasts , Nickel/analysis , Protoplasts/metabolism , Nicotiana/genetics , Biosensing Techniques/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Food Contamination/analysis , Metals, Heavy/analysis
11.
Sci Rep ; 14(1): 14558, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914666

ABSTRACT

Plants offer a cost-effective and scalable pharmaceutical platform devoid of host-derived contamination risks. However, their medical application is complicated by the potential for acute allergic reactions to external proteins. Developing plant-based protein therapeutics for localized diseases with non-invasive treatment modalities may capitalize on the benefits of plant proteins while avoiding their inherent risks. Dupilumab, which is effective against a variety of allergic and autoimmune diseases but has systemic responses and injection-related side effects, may be more beneficial if delivered locally using a small biological form. In this study, we engineered a single-chain variable fragment (scFv) of dupilumab, termed Dup-scFv produced by Nicotiana benthamiana, and evaluated its tissue permeability and anti-inflammatory efficacy in air-liquid interface cultured human nasal epithelial cells (HNECs). Despite showing 3.67- and 17-fold lower binding affinity for IL-4Ra in surface plasmon resonance assays and cell binding assays, respectively, Dup-scFv retained most of the affinity of dupilumab, which was originally high, with a dissociation constant (KD) of 4.76 pM. In HNECs cultured at the air-liquid interface, Dup-scFv administered on the air side inhibited the inflammatory marker CCL26 in hard-to-reach basal cells more effectively than dupilumab. In addition, Dup-scFv had an overall permeability of 0.8% across cell layers compared to undetectable levels of dupilumab. These findings suggest that plant-produced Dup-scFv can be delivered non-invasively to cultured HNESc to alleviate inflammatory signaling, providing a practical approach to utilize plant-based proteins for topical therapeutic applications.


Subject(s)
Antibodies, Monoclonal, Humanized , Epithelial Cells , Nicotiana , Single-Chain Antibodies , Humans , Nicotiana/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/genetics , Chemokines, CC/metabolism , Interleukin-4 Receptor alpha Subunit/metabolism , Cells, Cultured , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Nasal Mucosa/immunology
12.
J Physiol Sci ; 74(1): 35, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918702

ABSTRACT

BACKGROUND: The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca2+. METHODS: A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells. RESULTS: CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca2+ concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE. CONCLUSION: Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca2+ signaling and CaMKK2 pathways.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Carcinoma, Squamous Cell , Mouth Neoplasms , Reactive Oxygen Species , Smoke , Tobacco Products , Humans , Reactive Oxygen Species/metabolism , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Cell Line, Tumor , Smoke/adverse effects , Carcinoma, Squamous Cell/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Tobacco Products/adverse effects , Apoptosis/drug effects , Nicotiana/chemistry , Calcium/metabolism , Cell Survival/drug effects
13.
Biomolecules ; 14(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38927115

ABSTRACT

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Subject(s)
Metabolic Engineering , Resveratrol , Sucrose , Yarrowia , Resveratrol/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Metabolic Engineering/methods , Sucrose/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Vitis/microbiology , Vitis/genetics , Vitis/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Malonyl Coenzyme A/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Rhodotorula/genetics , Rhodotorula/metabolism , Fermentation , Arabidopsis/genetics , Arabidopsis/metabolism , Ammonia-Lyases , Bacterial Proteins
14.
Biosens Bioelectron ; 261: 116471, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878695

ABSTRACT

The intracellular developmental processes in plants, particularly concerning lignin polymer formation and biomass production are regulated by microRNAs (miRNAs). MiRNAs including miR397b are important for developing efficient and cost-effective biofuels. However, traditional methods of monitoring miRNA expression, like PCR, are time-consuming, require sample extraction, and lack spatial and temporal resolution, especially in real-world conditions. We present a novel approach using plasmonics nanosensing to monitor miRNA activity within living plant cells without sample extraction. Plasmonic biosensors using surface-enhanced Raman scattering (SERS) detection offer high sensitivity and precise molecular information. We used the Inverse Molecular Sentinel (iMS) biosensor on unique silver-coated gold nanorods (AuNR@Ag) with a high-aspect ratio to penetrate plant cell walls for detecting miR397b within intact living plant cells. MiR397b overexpression has shown promise in reducing lignin content. Thus, monitoring miR397b is essential for cost-effective biofuel generation. This study demonstrates the infiltration of nanorod iMS biosensors and detection of non-native miRNA 397b within plant cells for the first time. The investigation successfully demonstrates the localization of nanorod iMS biosensors through TEM and XRF-based elemental mapping for miRNA detection within plant cells of Nicotiana benthamiana. The study integrates shifted-excitation Raman difference spectroscopy (SERDS) to decrease background interference and enhance target signal extraction. In vivo SERDS testing confirms the dynamic detection of miR397b in Arabidopsis thaliana leaves after infiltration with iMS nanorods and miR397b target. This proof-of-concept study is an important stepping stone towards spatially resolved, intracellular miRNA mapping to monitor biomarkers and biological pathways for developing efficient renewable biofuel sources.


Subject(s)
Biosensing Techniques , Gold , MicroRNAs , Nanotubes , Spectrum Analysis, Raman , Nanotubes/chemistry , Biosensing Techniques/methods , MicroRNAs/genetics , MicroRNAs/analysis , Gold/chemistry , Spectrum Analysis, Raman/methods , Nicotiana/genetics , Nicotiana/chemistry , Silver/chemistry , Biomarkers , Lignin/chemistry
15.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1935-1949, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914502

ABSTRACT

Plant synthetic biology has significant theoretical advantages in exploration and production of plant natural products. However, its contribution to the field of biosynthesis is currently limited due to the lack of efficient chassis systems and related enabling technologies. Synthetic biologists often avoid tobacco as a chassis system because of its long operation cycle, difficulties in genetic and metabolic modification, complex metabolism and purification background, nicotine toxicity, and challenges in accurately controlling for agricultural production. Nevertheless, the tobacco suspension cell chassis system offers a viable solution to these challenges. The objective of this research was to develop a tobacco suspension cell chassis with high scientific and industrial potential. This chassis should exhibit rapid growth, high biomass, excellent dispersion, high transformation efficiency, and minimal nicotine content. Nicotiana benthamiana, which has high applicability in molecular technology, was used to induce suspension cells. The induced suspension cells, named NBS-1, exhibited rapid growth, excellent dispersion, and high biomass, reaching a maximum biomass of 476.39 g/L (fresh weight), which was significantly higher than that of BY-2. The transformation efficiency of the widely utilized pEAQ-HT transient expression system in NBS-1 reached 81%, which was substantially elevated compared to BY-2. The metabolic characteristics and bias of BY-2 and NBS-1 were analyzed using transcriptome data. It was found that the gene expression of pathways related to biosynthesis of flavonoids and their derivatives in NBS-1 was significantly higher, while the pathways related to alkaloid biosynthesis were significantly lower compared to BY-2. These findings were further validated by the total content of flavonoid and alkaloid. In summary, our research demonstrates NBS-1 possesses minimal nicotine content and provides valuable guidance for selecting appropriate chassis for specific products. In conclusion, this study developed NBS-1, a tobacco suspension cell chassis with excellent growth and transformation, high flavonoid content and minimal nicotine content, which has important guiding significance for the development of tobacco suspension cell chassis.


Subject(s)
Nicotiana , Nicotiana/metabolism , Nicotiana/genetics , Synthetic Biology , Plants, Genetically Modified/metabolism , Metabolic Engineering/methods , Cell Culture Techniques/methods , Nicotine/metabolism , Nicotine/biosynthesis , Biomass
16.
Plant Mol Biol ; 114(4): 73, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874648

ABSTRACT

Functional genomics through transgenesis has provided faster and more reliable methods for identifying, characterizing, and utilizing genes or quantitative trait loci linked to agronomic traits to target yield. The present study explored the role of Big Grain1 (BG1) gene of rice (Oryza sativa L.) in yield improvement of crop plants. We aimed to identify the genetic variation of OsBG1 in various indica rice cultivars by studying the allelic polymorphism of the gene, while also investigating the gene's potential to increase crop yield through the transgenic approach. Our study reports the presence of an extra 393 bp sequence having two 6 bp enhancer elements in the 3' regulatory sequence of OsBG1 in the large-grain cultivar IR64 but not in the small-grain cultivar Badshahbhog. A single copy of the OsBG1 gene in both the cultivars and a 4.1-fold higher expression of OsBG1 in IR64 than in Badshahbhog imply that the grain size is positively correlated with the level of OsBG1 expression in rice. The ectopic expression of OsBG1 under the endosperm-specific glutelin C promoter in Badshahbhog enhanced the flag leaf length, panicle weight, and panicle length by an average of 33.2%, 33.7%, and 30.5%, respectively. The length of anthers, spikelet fertility, and grain yield per plant increased in transgenic rice lines by an average of 27.5%, 8.3%, and 54.4%, respectively. Heterologous expression of OsBG1 under the constitutive 2xCaMV35S promoter improved the number of seed pods per plant and seed yield per plant in transgenic tobacco lines by an average of 2.2-fold and 2.6-fold, respectively. Improving crop yield is crucial to ensure food security and socio-economic stability, and identifying suitable genetic factor is the essential step towards this endeavor. Our findings suggest that the OsBG1 gene is a promising candidate for improving the grain yield of monocot and dicot plant systems by molecular breeding and genetic engineering.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Nicotiana , Oryza , Plant Proteins , Plants, Genetically Modified , Oryza/genetics , Oryza/growth & development , Nicotiana/genetics , Nicotiana/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Seeds/genetics , Seeds/growth & development
17.
Arch Virol ; 169(7): 149, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888750

ABSTRACT

The genus Alternaria comprises many important fungal pathogens that infect a wide variety of organisms. In this report, we present the discovery of a new double-stranded RNA (dsRNA) mycovirus called Alternaria botybirnavirus 2 (ABRV2) from a phytopathogenic strain, XC21-21C, of Alternaria sp. isolated from diseased tobacco leaves in China. The ABRV2 genome consists of two dsRNA components, namely dsRNA1 and dsRNA2, with lengths of 6,162 and 5,865 base pairs (bp), respectively. Each of these genomic dsRNAs is monocistronic, encoding hypothetical proteins of 201.6 kDa (P1) and 2193.3 kDa (P2). ABRV2 P1 and P2 share 50.54% and 63.13% amino acid sequence identity with the corresponding proteins encoded by dsRNA1 of Alternaria botybirnavirus 1 (ABRV1). Analysis of its genome organization and phylogenetic analysis revealed that ABRV2 is a new member of the genus Botybirnavirus.


Subject(s)
Alternaria , Fungal Viruses , Genome, Viral , Nicotiana , Phylogeny , Plant Diseases , RNA, Double-Stranded , RNA, Viral , Alternaria/virology , Alternaria/genetics , Nicotiana/virology , Nicotiana/microbiology , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Plant Diseases/microbiology , Plant Diseases/virology , RNA, Viral/genetics , RNA, Double-Stranded/genetics , China , Double Stranded RNA Viruses/genetics , Double Stranded RNA Viruses/isolation & purification , Double Stranded RNA Viruses/classification , Plant Leaves/virology , Plant Leaves/microbiology , Viral Proteins/genetics
18.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849576

ABSTRACT

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Subject(s)
Aspergillus , Biomass , Nicotiana , Nicotiana/microbiology , Nicotiana/metabolism , Aspergillus/enzymology , Aspergillus/metabolism , Sugars/metabolism , Odorants/analysis , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Amylases/metabolism , Volatile Organic Compounds/metabolism , Plant Leaves/microbiology , Cellulases/metabolism , Polygalacturonase/metabolism
19.
Plant Signal Behav ; 19(1): 2359257, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38825861

ABSTRACT

Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.


Subject(s)
14-3-3 Proteins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Potassium , Nicotiana/genetics , Nicotiana/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Potassium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
20.
Sci Rep ; 14(1): 13314, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858413

ABSTRACT

Plants respond to biotic and abiotic stress by activating and interacting with multiple defense pathways, allowing for an efficient global defense response. RNA silencing is a conserved mechanism of regulation of gene expression directed by small RNAs important in acquired plant immunity and especially virus and transgene repression. Several RNA silencing pathways in plants are crucial to control developmental processes and provide protection against abiotic and biotic stresses as well as invasive nucleic acids such as viruses and transposable elements. Various notable studies have shed light on the genes, small RNAs, and mechanisms involved in plant RNA silencing. However, published research on the potential interactions between RNA silencing and other plant stress responses is limited. In the present study, we tested the hypothesis that spreading and maintenance of systemic post-transcriptional gene silencing (PTGS) of a GFP transgene are associated with transcriptional changes that pertain to non-RNA silencing-based stress responses. To this end, we analyzed the structure and function of the photosynthetic apparatus and conducted whole transcriptome analysis in a transgenic line of Nicotiana benthamiana that spontaneously initiates transgene silencing, at different stages of systemic GFP-PTGS. In vivo analysis of chlorophyll a fluorescence yield and expression levels of key photosynthetic genes indicates that photosynthetic activity remains unaffected by systemic GFP-PTGS. However, transcriptomic analysis reveals that spreading and maintenance of GFP-PTGS are associated with transcriptional reprogramming of genes that are involved in abiotic stress responses and pattern- or effector-triggered immunity-based stress responses. These findings suggest that systemic PTGS may affect non-RNA-silencing-based defense pathways in N. benthamiana, providing new insights into the complex interplay between different plant stress responses.


Subject(s)
Gene Expression Regulation, Plant , Green Fluorescent Proteins , Nicotiana , Plants, Genetically Modified , Stress, Physiological , Transcriptome , Transgenes , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Nicotiana/genetics , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Gene Silencing , RNA Interference , Gene Expression Profiling , Photosynthesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...