Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.592
Filter
1.
Article in English | MEDLINE | ID: mdl-38955498

ABSTRACT

The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-ß signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.


Subject(s)
Granulosa Cells , Oocytes , Ovarian Follicle , Transcriptome , Animals , Female , Oocytes/metabolism , Oocytes/growth & development , Oocytes/cytology , Mice , Granulosa Cells/metabolism , Granulosa Cells/cytology , Transcriptome/genetics , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/cytology , Cell Communication/genetics , Signal Transduction/genetics , Gene Expression Profiling/methods , DNA Methylation/genetics , Oogenesis/genetics
2.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38880992

ABSTRACT

Although evolution is driven by changes in how regulatory pathways control development, we know little about the molecular details underlying these transitions. The TRA-2 domain that mediates contact with TRA-1 is conserved in Caenorhabditis. By comparing the interaction of these proteins in two species, we identified a striking change in how sexual development is controlled. Identical mutations in this domain promote oogenesis in Caenorhabditis elegans but promote spermatogenesis in Caenorhabditis briggsae. Furthermore, the effects of these mutations involve the male-promoting gene fem-3 in C. elegans but are independent of fem-3 in C. briggsae. Finally, reciprocal mutations in these genes show that C. briggsae TRA-2 binds TRA-1 to prevent expression of spermatogenesis regulators. By contrast, in C. elegans TRA-1 sequesters TRA-2 in the germ line, allowing FEM-3 to initiate spermatogenesis. Thus, we propose that the flow of information within the sex determination pathway has switched directions during evolution. This result has important implications for how evolutionary change can occur.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Sex Determination Processes , Spermatogenesis , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Male , Spermatogenesis/genetics , Female , Caenorhabditis/genetics , Biological Evolution , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mutation , Oogenesis/genetics , Evolution, Molecular , Self-Fertilization , DNA-Binding Proteins , Transcription Factors
3.
Nat Cell Biol ; 26(6): 962-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839978

ABSTRACT

Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Oocytes , Oogenesis , Animals , Oocytes/metabolism , Female , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Oogenesis/genetics , Mice , Histones/metabolism , Histones/genetics , Embryo, Mammalian/metabolism , Mice, Inbred C57BL , Embryonic Development/genetics , Ovarian Follicle/metabolism , Mice, Knockout
4.
Genes Dev ; 38(9-10): 436-454, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38866556

ABSTRACT

Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.


Subject(s)
Cell Differentiation , Drosophila Proteins , Genome, Insect , Nuclear Pore , Oogenesis , Animals , Oogenesis/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cell Differentiation/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Genome, Insect/genetics , Gene Expression Regulation, Developmental/genetics , Female , Drosophila melanogaster/genetics , Oocytes/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics
5.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891872

ABSTRACT

Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Drosophila simulans , RNA, Small Interfering , Animals , Female , Drosophila melanogaster/genetics , Male , Drosophila simulans/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA, Small Interfering/genetics , DNA Transposable Elements/genetics , Ovary/metabolism , Hybridization, Genetic , Oogenesis/genetics , Infertility/genetics , Crosses, Genetic , DEAD-box RNA Helicases
6.
Article in English | MEDLINE | ID: mdl-38862425

ABSTRACT

Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.


Subject(s)
DNA Methylation , Databases, Genetic , Gametogenesis , Animals , Humans , Mice , Gametogenesis/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Male , Germ Cells/metabolism , Female , Spermatogenesis/genetics , Oogenesis/genetics , Genomics/methods , Multiomics
7.
C R Biol ; 347: 45-52, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888193

ABSTRACT

Fertility is declining worldwide and many couples are turning towards assisted reproductive technologies (ART) to conceive babies. Organisms that propagate via sexual reproduction often come from the fusion between two gametes, an oocyte and a sperm, whose qualities seem to be decreasing in the human species. Interestingly, while the sperm mostly transmits its haploid genome, the oocyte transmits not only its haploid set of chromosomes but also its huge cytoplasm to its progeny. This is what can be defined as the maternal inheritance composed of chromosomes, organelles, lipids, metabolites, proteins and RNAs. To decipher the decline in oocyte quality, it is essential to explore the nature of the maternal inheritance, and therefore study the last stages of murine oogenesis, namely the end of oocyte growth followed by the two meiotic divisions. These divisions are extremely asymmetric in terms of the size of the daughter cells, allowing to preserve the maternal inheritance accumulated during oocyte growth within these huge cells to support early embryo development. Studies performed in Marie-Hélène Verlhac's lab have allowed to discover the unprecedented impact of original acto-myosin based mechanisms in the constitution as well as the preservation of this maternal inheritance and the consequences when these processes go awry.


La fécondité diminue mondialement et de nombreux couples se tournent vers les techniques de procréation médicalement assistée (PMA) pour concevoir des bébés. Les organismes se propageant par reproduction sexuée sont souvent issus de la fusion de deux gamètes, un ovocyte et un spermatozoïde, dont les qualités semblent diminuer dans l'espèce humaine. Si le spermatozoïde transmet principalement son génome haploïde, l'ovocyte transmet à sa progéniture non seulement son lot haploïde de chromosomes, mais aussi son immense cytoplasme. C'est ce que l'on peut définir comme l'héritage maternel, composé de chromosomes, d'organelles, de lipides, de métabolites, de protéines et d'ARNs. Pour comprendre la baisse de qualité des ovocytes, il est essentiel d'explorer la nature de cet héritage maternel, et donc d'étudier les dernières étapes de l'ovogenèse murine, à savoir la fin de la croissance ovocytaire suivie des deux divisions méiotiques. Ces divisions sont extrêmement asymétriques par la taille des cellules filles engendrées, ce qui permet de préserver l'héritage maternel accumulé pendant la croissance de cette énorme cellule, l'ovocyte, pour soutenir le développement précoce de l'embryon. Les études menées dans le laboratoire de Marie-Hélène Verlhac ont permis de découvrir l'impact sans précédent de mécanismes originaux dépendant de l'acto-myosine dans la constitution et la préservation de cet héritage maternel, ainsi que les conséquences des erreurs dans ces processus.


Subject(s)
Maternal Inheritance , Oocytes , Animals , Female , Humans , Mice , Maternal Inheritance/genetics , Meiosis , Oogenesis/genetics
8.
Nat Commun ; 15(1): 5248, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898112

ABSTRACT

Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary biased. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.


Subject(s)
Oocytes , Oogenesis , RNA-Binding Proteins , Zebrafish Proteins , Zebrafish , Animals , Female , Male , Gene Expression Regulation, Developmental , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Nutrients/metabolism , Oocytes/metabolism , Oogenesis/genetics , Ovary/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Testis/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
9.
Nat Commun ; 15(1): 5331, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909026

ABSTRACT

Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.


Subject(s)
Gametogenesis , Mice, Knockout , Polyadenylation , RNA, Messenger , Spermatogenesis , Animals , Female , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mice , Spermatogenesis/genetics , Gametogenesis/genetics , Oogenesis/genetics , Polynucleotide Adenylyltransferase/metabolism , Polynucleotide Adenylyltransferase/genetics , Oocytes/metabolism , Fertility/genetics , Mice, Inbred C57BL
10.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38735763

ABSTRACT

Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.


Subject(s)
Follicle Stimulating Hormone , Ovarian Follicle , Transcriptome , Animals , Female , Follicle Stimulating Hormone/pharmacology , Mice , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Transcriptome/drug effects , Dose-Response Relationship, Drug , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/drug effects , Oogenesis/genetics , Signal Transduction/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Cyclic AMP/metabolism
11.
Nature ; 631(8019): 170-178, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768632

ABSTRACT

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Subject(s)
Cellular Reprogramming , DNA Methylation , Epigenesis, Genetic , Germ Cells , Proto-Oncogene Proteins , Humans , Male , Cellular Reprogramming/genetics , DNA Methylation/genetics , Germ Cells/metabolism , Germ Cells/cytology , Female , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/deficiency , Cell Differentiation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Spermatogonia/cytology , Spermatogonia/metabolism , Spermatogenesis/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , MAP Kinase Signaling System , Promoter Regions, Genetic/genetics , Oogenesis/genetics , Mitosis/genetics , Mixed Function Oxygenases
12.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38745364

ABSTRACT

The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.


Subject(s)
Cumulus Cells , Extracellular Vesicles , MicroRNAs , Oocytes , Animals , Cumulus Cells/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Oocytes/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Mice , Female , In Vitro Oocyte Maturation Techniques , Oogenesis/genetics , Zona Pellucida/metabolism
13.
Biomolecules ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785929

ABSTRACT

Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.


Subject(s)
Alleles , Drosophila Proteins , Drosophila melanogaster , Oogenesis , Receptors, Notch , Animals , Oogenesis/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Female , Wings, Animal/growth & development , Wings, Animal/metabolism , Mutation , Signal Transduction , Phenotype , Membrane Proteins
14.
J Assist Reprod Genet ; 41(5): 1387-1401, 2024 May.
Article in English | MEDLINE | ID: mdl-38656738

ABSTRACT

OBJECTIVE: Women who are of reproductive age can suffer from polycystic ovary syndrome (PCOS), an endocrine disorder. Anovulatory infertility is mostly caused by aberrant follicular development, which is seen in PCOS patients. Due to the dysfunction of reproductive and endocrine function in PCOS patients, assisted reproduction treatment is one of the main means to obtain clinical pregnancy for PCOS patients. Long non-coding RNA (lncRNA) as a group of functional RNA molecules have been found to participate in the regulation of oocyte function, hormone metabolism, and proliferation and apoptosis of granulosa cells. In this study, we investigated the role of lncRNAs in follicular fluid-derived exosomes and the underlying mechanism of lncRNA LIPE-AS1. METHODS: We used RNA sequencing to analyze the lncRNA profiles of follicular fluid-derived exosomes in PCOS patients and controls. RT-qPCR was performed to detect the expression levels of these lncRNAs in control (n = 30) and PCOS (n = 30) FF exosome samples. Furthermore, we validated the performance of lncRNA LIPE-AS1 in oocyte maturation by in vitro maturation (IVM) experiments in mouse and steroid metabolism in granulosa cells. RESULTS: We found 501 lncRNAs were exclusively expressed in the control group and another 273 lncRNAs were found to be specifically expressed in the PCOS group. LncRNA LIPE-AS1, highly expressed in PCOS exosomes, was related to a poor oocyte maturation and embryo development in PCOS patients. Reduced number of MII oocytes were observed in the LIPE-AS1 group by in vitro maturation (IVM) experiments in mouse. LIPE-AS1 was also shown to modulate steroid metabolism and granulosa cell proliferation and apoptosis by LIPE-AS1/miR-4306/LHCGR axis. CONCLUSION: These findings suggested that the increased expression of LIPE-AS1, facilitated by follicular fluid exosomes, had a significant impact on both oocyte maturation and embryo development. We demonstrated the ceRNA mechanism involving LIPE-AS1, miR-4306, and LHCGR as a regulator of hormone production and metabolism. These findings indicate that LIPE-AS1 is essential in PCOS oocyte maturation and revealed a ceRNA network of LIPE-AS1 and provided new information on abnormal steroid metabolism and oocyte development in PCOS.


Subject(s)
Exosomes , Follicular Fluid , Granulosa Cells , Oocytes , Polycystic Ovary Syndrome , RNA, Long Noncoding , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/metabolism , Female , Follicular Fluid/metabolism , RNA, Long Noncoding/genetics , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Exosomes/genetics , Exosomes/metabolism , Oocytes/metabolism , Oocytes/growth & development , Mice , Animals , In Vitro Oocyte Maturation Techniques , Adult , Steroids/metabolism , Oogenesis/genetics , Apoptosis/genetics , Cell Proliferation/genetics
15.
BMC Genomics ; 25(1): 335, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38580918

ABSTRACT

BACKGROUND: Mammalian follicle development is characterized by extensive changes in morphology, endocrine responsiveness, and function, providing the optimum environment for oocyte growth, development, and resumption of meiosis. In cattle, the first signs of transcription activation in the oocyte are observed in the secondary follicle, later than during mouse and human oogenesis. While many studies have generated extensive datasets characterizing gene expression in bovine oocytes, they are mostly limited to the analysis of fully grown and matured oocytes. The aim of the present study was to apply single-cell RNA sequencing to interrogate the transcriptome of the growing bovine oocyte from the secondary follicle stage through to the mid-antral follicle stage. RESULTS: Single-cell RNA-seq libraries were generated from oocytes of known diameters (< 60 to > 120 µm), and datasets were binned into non-overlapping size groups for downstream analysis. Combining the results of weighted gene co-expression network and Trendy analyses, and differently expressed genes (DEGs) between size groups, we identified a decrease in oxidative phosphorylation and an increase in maternal -genes and transcription regulators across the bovine oocyte growth phase. In addition, around 5,000 genes did not change in expression, revealing a cohort of stable genes. An interesting switch in gene expression profile was noted in oocytes greater than 100 µm in diameter, when the expression of genes related to cytoplasmic activities was replaced by genes related to nuclear activities (e.g., chromosome segregation). The highest number of DEGs were detected in the comparison of oocytes 100-109 versus 110-119 µm in diameter, revealing a profound change in the molecular profile of oocytes at the end of their growth phase. CONCLUSIONS: The current study provides a unique dataset of the key genes and pathways characteristic of each stage of oocyte development, contributing an important resource for a greater understanding of bovine oogenesis.


Subject(s)
Oogenesis , Transcriptome , Female , Cattle , Animals , Humans , Mice , Oogenesis/genetics , Oocytes/metabolism , Ovarian Follicle/metabolism , Cell Proliferation , Mammals/genetics
16.
Sci Rep ; 14(1): 8263, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594333

ABSTRACT

Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies. We showed that in orthopteran Meconema meridionale, the Bb comprises a network of mitochondria and perinuclear nuage aggregations. As oogenesis progresses, the network expands filling almost entire ooplasm, then partitions into several smaller entities, termed micro-networks, and ultimately into individual mitochondria. As in somatic cells, this process involves microfilaments and elements of endoplasmic reticulum. We showed also that at least some of the individual mitochondria are surrounded by phagophores and eliminated via mitophagy. These findings support the idea that the Bb is implicated in the multiplication and selective elimination of (defective) mitochondria and therefore may participate in the transfer of undamaged (healthy) mitochondria to the next generation.


Subject(s)
Oocytes , Orthoptera , Animals , Oocytes/metabolism , Oogenesis/genetics , Mitochondria/genetics , Insecta , Endoplasmic Reticulum
17.
Genetics ; 227(1)2024 05 07.
Article in English | MEDLINE | ID: mdl-38427913

ABSTRACT

RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1. The interaction between FBF-2 and CSN-5 can be detected in vivo by proximity ligation. csn-5 mutation results in the destabilization of FBF proteins, which may explain previously observed decrease in the numbers of germline stem and progenitor cells, and disruption of oogenesis. The loss of csn-5 does not decrease the levels of a related PUF protein PUF-3, and csn-5(lf) phenotype is not enhanced by fbf-1/2 knockdown, suggesting that the effect is specific to FBFs. The effect of csn-5 on oogenesis is largely independent of the COP9 signalosome and is cell autonomous. Surprisingly, the regulation of FBF protein levels involves a combination of COP9-dependent and COP9-independent mechanisms differentially affecting FBF-1 and FBF-2. This work supports a previously unappreciated role for CSN-5 in the stabilization of germline stem cell regulatory proteins FBF-1 and FBF-2.


Subject(s)
COP9 Signalosome Complex , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , COP9 Signalosome Complex/metabolism , COP9 Signalosome Complex/genetics , Germ Cells/metabolism , Oogenesis/genetics , Protein Stability , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Stem Cells/metabolism , Stem Cells/cytology
18.
Gen Comp Endocrinol ; 351: 114479, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38431208

ABSTRACT

Functions of vitellogenins have been in the limelight of fish reproductive physiology research for decades. The Vtg system of acanthomorph teleosts consists of two complete forms of Vtgs (VtgAa and VtgAb) and an incomplete form, VtgC. Insufficient uptake and processing of Vtgs and their yolk proteins lead to inadequate oocyte hydration ensuing failure in acquisition of egg buoyancy and early developmental deficiencies. This review presents a summary of our studies on utilization of multiple Vtgs in species with different egg buoyancy characteristics, as examples. Studies of moronids revealed limited degradation of all three forms of lipovitellin heavy chain derived from their three respective forms of Vtg, by which they contribute to the free amino acid pool driving oocyte hydration during oocyte maturation. In later studies, CRISPR/Cas9 was employed to invalidate zebrafish type I, type II and type III Vtgs, which are orthologs of acanthamorph VtgAa, VtgAb and VtgC, respectively. Results revealed type I Vtg to have essential developmental and nutritional functions in both late embryos and larvae. Genomic disturbance of type II Vtg led to high mortalities during the first 24 h of embryonic development. Despite being a minor form of Vtg in zebrafish and most other species, type III Vtg was also found to contribute essentially to the developmental potential of zebrafish zygotes and early embryos. Apart from severe effects on progeny survival, these studies also disclosed previously unreported regulatory effects of Vtgs on fecundity and fertility, and on embryo hatching. We recently utilized parallel reactions monitoring based liquid chromatography tandem mass spectrometry to assess the processing and utilization of lipovitellins derived from different forms of Vtg in Atlantic halibut and European plaice. Results showed the Lv heavy chain of VtgAa (LvHAa) to be consumed during oocyte maturation and the Lv light chain of VtgAb (LvLAb) to be utilized specifically during late larval stages, while all remaining YPs (LvLAa, LvHAb, LvHC, and LvLC) were utilized during or after hatching up until first feeding in halibut. In plaice, all YPs except LvHAa, which similarly to halibut supports oocyte maturation, are utilized from late embryo to late larval development up until first feeding. The collective findings from these studies affirm substantial disparity in modes of utilization of different types of Vtgs among fish species with various egg buoyancy characteristics, and they reveal previously unknown regulatory functions of Vtgs in maintenance of reproductive assets such as maternal fecundity and fertility, and in embryonic hatching. Despite the progress that has been made over the past two decades by examining multiple Vtgs and their functions, a higher complexity of these systems with much greater diversity between species in modes of Vtg utilization is now evident. Further research is needed to reveal novel ways each species has evolved to utilize these complex multiple Vtg systems and to discover unifying principles for this evolution in fishes of diverse lineages, habitats and life history characteristics.


Subject(s)
Perciformes , Vitellogenins , Animals , Vitellogenins/metabolism , Zebrafish/metabolism , Fishes/metabolism , Oocytes/metabolism , Oogenesis/genetics , Perciformes/metabolism
19.
Reproduction ; 167(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38471304

ABSTRACT

In brief: HSP90AA1 is a ubiquitous molecular chaperone that can resist cellular stress, such as oxidative stress and apoptosis, and mediate the efficacy and protein folding of normal cells during heat stress, as well as many other functions. This study further reveals the role of HSP90AA1 in bovine oocyte maturation and early embryonic development. Abstract: HSP90AA1, a highly abundant and ubiquitous molecular chaperone, plays important roles in various cellular processes including cell cycle control, cell survival, and hormone signaling pathways. In this study, we investigated the functions of HSP90AA1 in bovine oocyte and early embryo development. We found that HSP90AA1 was expressed at all stages of development, but was mainly located in the cytoplasm, with a small amount distributed in the nucleus. We then evaluated the effect of HSP90AA1 on the in vitro maturation of bovine oocytes using tanespimycin (17-AAG), a highly selective inhibitor of HSP90AA1. The results showed that inhibition of HSP90AA1 decreased nuclear and cytoplasmic maturation of oocytes, disrupted spindle assembly and chromosome distribution, significantly increased acetylation levels of α-tubulin in oocytes and affected epigenetic modifications (H3K27me3 and H3K27ac). In addition, H3K9me3 was increased at various stages during early embryo development. Finally, the impact of HSP90AA1 on early embryo development was explored. The results showed that inhibition of HSP90AA1 reduced the cleavage and blastocyst formation rates, while increasing the fragmentation rate and decreasing blastocyst quality. In conclusion, HSP90AA1 plays a crucial role in bovine oocyte maturation as well as early embryo development.


Subject(s)
HSP90 Heat-Shock Proteins , Oocytes , Oogenesis , Animals , Cattle , Blastocyst/metabolism , Embryonic Development , In Vitro Oocyte Maturation Techniques/methods , Molecular Chaperones/metabolism , Molecular Chaperones/pharmacology , Oocytes/metabolism , Oogenesis/genetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism
20.
Article in English | MEDLINE | ID: mdl-38432104

ABSTRACT

Methylosome protein 50 (Mep50) functions as a partner to protein arginine methyltransferase 5. MEP50 serves as a coactivator for both the androgen receptor and estrogen receptor in humans. Mep50 plays a crucial role in the development of germ cells in Drosophila. The precise role of Mep50 in oogenesis remains unclear in vertebrates. The objective of this study was to investigate the role of Mep50 in oogenesis in medaka fish. Disruption of Mep50 resulted in impaired oogenesis and the formation of multiple oocyte follicles in medaka. RNA-seq analysis revealed significant differential gene expression in the mutant ovary, with 4542 genes up-regulated and 1264 genes down-regulated. The regulated genes were found to be enriched in cellular matrices and ECM-receptor interaction, the Notch signaling pathway, the PI3K-Akt signaling pathway, the MAPK signaling pathway, the Hippo signaling pathway, and the Jak-Stat pathway, among others. In addition, the genes related to the hypothalamus-pituitary-gonad axis, steroid metabolism, and IGF system were impacted. Furthermore, the mutation of mep50 caused significant alterations in alternative splicing of pre-mRNA in ovarian cells. Quantitative RT-PCR results validated the findings from RNA-seq analysis in the specific genes, including akt2, map3k5, yap1, fshr, cyp17a, igf1, ythdc2, cdk6, and col1, among others. The findings of this study demonstrate that Mep50 plays a crucial role in oogenesis, participating in a diverse range of biological processes such as steroid metabolism, cell matrix regulation, and signal pathways. This may be achieved through the regulation of gene expression via mRNA splicing in medaka ovarian cells.


Subject(s)
Fish Proteins , Oogenesis , Oryzias , Animals , Oogenesis/genetics , Oryzias/genetics , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...