Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928480

ABSTRACT

Our study aimed to investigate the role of ferroptosis in sevoflurane-induced hearing impairment and explore the mechanism of the microRNA-182-5p (miR-182-5p)/Glutathione Peroxidase 4 (GPX4) pathway in sevoflurane-induced ototoxicity. Immunofluorescence staining was performed using myosin 7a and CtBP2. Cell viability was assessed using the CCK-8 kit. Fe2+ concentration was measured using FerroOrange and Mi-to-FerroGreen fluorescent probes. The lipid peroxide level was assessed using BODIPY 581/591 C11 and MitoSOX fluorescent probes. The auditory brainstem response (ABR) test was conducted to evaluate the hearing status. Bioinformatics tools and dual luciferase gene reporter analysis were used to confirm the direct targeting of miR-182-5p on GPX4 mRNA. GPX4 and miR-182-5p expression in cells was assessed by qRT-PCR and Western blot. Ferrostatin-1 (Fer-1) pretreatment significantly improved hearing impairment and damage to ribbon synapses in mice caused by sevoflurane exposure. Immunofluorescence staining revealed that Fer-1 pretreatment reduced intracellular and mitochondrial iron overload, as well as lipid peroxide accumulation. Our findings indicated that miR-182-5p was upregulated in sevoflurane-exposed HEI-OC1 cells, and miR-182-5p regulated GPX4 expression by binding to the 3'UTR of GPX4 mRNA. The inhibition of miR-182-5p attenuated sevoflurane-induced iron overload and lipid peroxide accumulation. Our study elucidated that the miR-182-5p/GPX4 pathway was implicated in sevoflurane-induced ototoxicity by promoting ferroptosis.


Subject(s)
Ferroptosis , MicroRNAs , Ototoxicity , Phospholipid Hydroperoxide Glutathione Peroxidase , Sevoflurane , Ferroptosis/drug effects , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Sevoflurane/adverse effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Animals , Mice , Ototoxicity/metabolism , Ototoxicity/etiology , Signal Transduction/drug effects , Cell Line , Male , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Hearing Loss/pathology , Mice, Inbred C57BL , Phenylenediamines/pharmacology , Cyclohexylamines
2.
Oral Oncol ; 154: 106827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735130

ABSTRACT

PURPOSE: To investigate patient-reported outcomes among long-term survivors and to analyze their associated risk factors to provide better treatment and symptom management for nasopharyngeal carcinoma patients. MATERIALS AND METHODS: This retrospective study collected patients diagnosed with nasopharyngeal carcinoma who received radical intensity-modulated radiotherapy in our hospital from June 2009 to June 2016. The patients' disease status and patient-reported outcomes were analyzed by follow-up. The ototoxicity was graded according to CTCAE 5.0. RESULTS: A total of 223 patients were included in the study. Among the enrolled patients, the median follow-up time was 8.4 (6.0-13.0) years. Based on the patient-reported outcomes, ototoxicity was the most common symptom (52.9 %). After univariable and multivariable logistic regression, age ≥ 50 years old (OR, 4.066; 95 % CI, 1.799-9.190; P = .001), diabetes (OR, 3.520; 95 % CI, 1.442-8.591; P = .006), D2 ≥ 69 Gy (OR, 3.715; 95 % CI, 1.064-12.969; P = . 040) and V35 ≥ 91.5 % (OR, 3.398; 95 % CI, 1.113-10.372; P = .032) were associated with a higher incidence of grade 3-4 ototoxicity. Then, we constructed the individual nomogram and the C index of the graph was 0.815. By univariable logistic regression, we found that grade 3-4 ototoxicity was associated with an increased risk of multiple other symptoms, dysmasesia, tongue dysfunction, hoarseness, dysphagia and ocular toxicity. CONCLUSION: In long-term survivors of nasopharyngeal carcinoma patients receiving IMRT, the most common patient-reported outcome was ototoxicity. Age ≥ 50 years, diabetes, ear exposure dose of D2 ≥ 69 Gy and V35 ≥ 91.5 % are independent risk factors for grade 3-4 ototoxicity.


Subject(s)
Cancer Survivors , Nasopharyngeal Carcinoma , Ototoxicity , Humans , Male , Female , Middle Aged , Risk Factors , Retrospective Studies , Ototoxicity/etiology , Ototoxicity/epidemiology , Adult , Nasopharyngeal Neoplasms/radiotherapy , Aged , Radiotherapy, Intensity-Modulated/adverse effects , Patient Reported Outcome Measures
3.
Otolaryngol Pol ; 78(3): 1-5, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38808639

ABSTRACT

<b><br>Introduction:</b> Immune checkpoint inhibitors (ICIs) and T-cell therapies are a modern, well-established cancer treatment. The priority of oncological treatment is to cure cancer. However, treatment-related toxicities, i.e. immune-related adverse events (irAEs), continue to emerge and are not that well understood yet. ICIs can cause profound, multiple, and diverse irAEs - the sequelae of unknown mechanisms. One of the organs susceptible to collateral damage is the hearing organ. Complications related to hearing, tinnitus, and balance disorders are extremely burdensome and significantly impair many aspects of the quality of life of patients and survivors.</br> <b><br>Aim:</b> The aim of the work is to review the literature in the area of ototoxicity of ICIs.</br> <b><br>Materials and method:</b> A systematic search of the Web of Science, PubMed, and Embase databases for studies published until 1 March 2022 was conducted.</br> <b><br>Results:</b> Reported clinical symptoms ranged from sudden bilateral hearing loss and imbalance to mild hearing loss or tinnitus with preserved hearing. It was found that the median time from ICI initiation to hearing loss development was 3 months. The hearing impairment was secondary to bilateral sensorineural hearing loss in the majority of patients (>60%), and at least one other irAE accompanied the hearing loss in 2/3 of patients. Hearing loss significantly improved in 45.7% of the patients.</br> <b><br>Conclusions:</b> The majority of cases of ICI-related hearing loss presented in the literature were reversible. Therefore, it is important to develop and implement routine therapeutic algorithms. Further research is needed to define the true prevalence of ICI-related hearing loss, optimal diagnostics, and management.</br>.


Subject(s)
Immune Checkpoint Inhibitors , Ototoxicity , Humans , Immune Checkpoint Inhibitors/adverse effects , Ototoxicity/etiology , Male , Female , Hearing Loss/chemically induced , Neoplasms/drug therapy , Middle Aged
4.
Sci Rep ; 14(1): 10910, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740884

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Subject(s)
Kanamycin , Mice, Inbred C57BL , Ototoxicity , Signal Transduction , Spiral Ganglion , Transforming Growth Factor beta , Animals , Kanamycin/toxicity , Signal Transduction/drug effects , Ototoxicity/etiology , Ototoxicity/metabolism , Ototoxicity/pathology , Transforming Growth Factor beta/metabolism , Mice , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Furosemide/pharmacology , Male
5.
J Antimicrob Chemother ; 79(7): 1508-1528, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38629462

ABSTRACT

BACKGROUND: Aminoglycosides (AGs) are important antibiotics in the treatment of Gram-negative sepsis. However, they are associated with the risk of irreversible sensorineural hearing loss (SNHL). Several genetic variants have been implicated in the development of ototoxicity. OBJECTIVES: To evaluate the pharmacogenetic determinants of AG-related ototoxicity. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and was registered on Prospero (CRD42022337769). In Dec 2022, PubMed, Cochrane Library, Embase and MEDLINE were searched. Included studies were those reporting original data on the effect of the AG-exposed patient's genome on the development of ototoxicity. RESULTS: Of 10 202 studies, 31 met the inclusion criteria. Twenty-nine studies focused on the mitochondrial genome, while two studied the nuclear genome. One study of neonates found that 30% of those with the m.1555A > G variant failed hearing screening after AG exposure (level 2 evidence). Seventeen additional studies found the m.1555A > G variant was associated with high penetrance (up to 100%) of SNHL after AG exposure (level 3-4 evidence). Nine studies of m.1494C > T found the penetrance of AG-related SNHL to be up to 40%; however, this variant was also identified in those with SNHL without AG exposure (level 3-4 evidence). The variants m.1005T > C and m.1095T > C may be associated with AG-related SNHL; however, further studies are needed. CONCLUSIONS: This review found that the m.1555A > G and m.1494C > T variants in the MT-RNR1 gene have the strongest evidence in the development of AG-related SNHL, although study quality was limited (level 2-4). These variants were associated with high penetrance of a SNHL phenotype following AG exposure.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Hearing Loss, Sensorineural , Ototoxicity , Pharmacogenetics , Humans , Aminoglycosides/adverse effects , Ototoxicity/genetics , Ototoxicity/etiology , Anti-Bacterial Agents/adverse effects , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/chemically induced
6.
Sci Rep ; 14(1): 7889, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570541

ABSTRACT

Nobiletin, a citrus polymethoxy flavonoid with antiapoptotic and antioxidative properties, could safeguard against cisplatin-induced nephrotoxicity and neurotoxicity. Cisplatin, as the pioneer of anti-cancer drug, the severe ototoxicity limits its clinical applications, while the effect of nobiletin on cisplatin-induced ototoxicity has not been identified. The current study investigated the alleviating effect of nobiletin on cisplatin-induced ototoxicity and the underlying mechanisms. Apoptosis and ROS formation were evaluated using the CCK-8 assay, Western blotting, and immunofluorescence, indicating that nobiletin attenuated cisplatin-induced apoptosis and oxidative stress. LC3B and SQSTM1/p62 were determined by Western blotting, qPCR, and immunofluorescence, indicating that nobiletin significantly activated autophagy. Nobiletin promoted the nuclear translocation of NRF2 and the transcription of its target genes, including Hmox1, Nqo1, and ferroptosis markers (Gpx4, Slc7a11, Fth, and Ftl), thereby inhibiting ferroptosis. Furthermore, RNA sequencing analysis verified that autophagy, ferroptosis, and the NRF2 signaling pathway served as crucial points for the protection of nobiletin against ototoxicity caused by cisplatin. Collectively, these results indicated, for the first time, that nobiletin alleviated cisplatin-elicited ototoxicity through suppressing apoptosis and oxidative stress, which were attributed to the activation of autophagy and the inhibition of NRF2/GPX4-mediated ferroptosis. Our study suggested that nobiletin could be a prospective agent for preventing cisplatin-induced hearing loss.


Subject(s)
Ferroptosis , Flavones , Ototoxicity , Humans , Cisplatin/toxicity , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Ototoxicity/drug therapy , Ototoxicity/etiology , Prospective Studies , Phospholipid Hydroperoxide Glutathione Peroxidase/pharmacology , Autophagy
7.
J Assoc Res Otolaryngol ; 25(3): 259-275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622383

ABSTRACT

PURPOSE: Cisplatin is a low-cost clinical anti-tumor drug widely used to treat solid tumors. However, its use could damage cochlear hair cells, leading to irreversible hearing loss. Currently, there appears one drug approved in clinic only used for reducing ototoxicity associated with cisplatin in pediatric patients, which needs to further explore other candidate drugs. METHODS: Here, by screening 1967 FDA-approved drugs to protect cochlear hair cell line (HEI-OC1) from cisplatin damage, we found that Tedizolid Phosphate (Ted), a drug indicated for the treatment of acute infections, had the best protective effect. Further, we evaluated the protective effect of Ted against ototoxicity in mouse cochlear explants, zebrafish, and adult mice. The mechanism of action of Ted was further explored using RNA sequencing analysis and verified. Meanwhile, we also observed the effect of Ted on the anti-tumor effect of cisplatin. RESULTS: Ted had a strong protective effect on hair cell (HC) loss induced by cisplatin in zebrafish and mouse cochlear explants. In addition, when administered systemically, it protected mice from cisplatin-induced hearing loss. Moreover, antitumor studies showed that Ted had no effect on the antitumor activity of cisplatin both in vitro and in vivo. RNA sequencing analysis showed that the otoprotective effect of Ted was mainly achieved by inhibiting phosphorylation of ERK. Consistently, ERK activator aggravated the damage of cisplatin to HCs. CONCLUSION: Collectively, these results showed that FDA-approved Ted protected HCs from cisplatin-induced HC loss by inhibiting ERK phosphorylation, indicating its potential as a candidate for preventing cisplatin ototoxicity in clinical settings.


Subject(s)
Antineoplastic Agents , Cisplatin , Hearing Loss , Organophosphates , Oxazoles , Zebrafish , Animals , Cisplatin/toxicity , Cisplatin/adverse effects , Mice , Hearing Loss/prevention & control , Hearing Loss/chemically induced , Oxazoles/pharmacology , Organophosphates/toxicity , Antineoplastic Agents/toxicity , United States Food and Drug Administration , Drug Approval , Hair Cells, Auditory/drug effects , United States , Ototoxicity/prevention & control , Ototoxicity/etiology , Humans
8.
Otol Neurotol ; 45(5): 495-501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38561601

ABSTRACT

HYPOTHESIS: Cyclodextrin (CDX)-induced serum prestin burst is not dependent on outer hair cell (OHC) loss. BACKGROUND: Serum prestin has been proposed as a biomarker for ototoxicity. We recently used an automated Western approach to quantify serum prestin changes in a newly introduced model of CDX ototoxicity. To gain insights into prestin as a biomarker, here we further characterize serum prestin in the CDX model. METHODS: Guinea pigs were treated with 750, 3,000, or 4,000 mg/kg CDX, and serum samples were obtained through up to 15 weeks after exposure. Serum prestin levels were quantified using automated Western, and hair cell counts were obtained. RESULTS: All three doses induced an N -glycosylated ~134-kDa prestin burst; however, only the 3,000 and 4,000 mg/kg resulted in robust OHC loss. Prestin levels returned to baseline where they remained up to 15 weeks in the absence of OHCs. CONCLUSION: The ~134-kDa prestin burst induced after CDX administration is N -glycosylated, representing a posttranslational modification of prestin. Serum prestin seems to be a promising biomarker when using therapeutics with ototoxic properties because it is not dependent on OHC loss as a necessary event, thus affording the opportunity for early detection and intervention.


Subject(s)
Hair Cells, Auditory, Outer , Animals , Guinea Pigs , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Biomarkers/blood , Biomarkers/metabolism , Ototoxicity/etiology , Sulfate Transporters/metabolism
9.
Hear Res ; 445: 108995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518393

ABSTRACT

OBJECTIVE: The genotype-phenotype relationship in cisplatin-induced ototoxicity remains unclear. By assessing early shifts in distortion product otoacoustic emission (DPOAE) levels after initial cisplatin administration, we aimed to discriminate patients' susceptibility to cisplatin-induced ototoxicity and elucidate their genetic background. STUDY DESIGN: A prospective cross-sectional study. SETTING: Tertiary referral hospital in Japan. PATIENTS: Twenty-six patients with head and neck cancer were undergoing chemoradiotherapy with three cycles of 100 mg/m2 cisplatin. INTERVENTIONS: Repetitive pure-tone audiometry and DPOAE measurements, and blood sampling for DNA extraction were performed. Patients were grouped into early ototoxicity presence or absence based on whether DPOAE level shifts exceeded the corresponding reference limits of the 21-day test interval. MAIN OUTCOME MEASURES: Hearing thresholds after each cisplatin cycle, severity of other adverse events, and polymorphisms in cisplatin-induced ototoxicity-associated genes were compared. RESULTS: Early ototoxicity was present in 14 and absent in 12 patients. Ototoxicity presence on DPOAEs was associated with greater progression of hearing loss in frequencies ≥2 kHz throughout therapy and with higher ototoxicity grades compared with ototoxicity absence. Ototoxicity was further associated with grade ≥2 nausea. Ototoxicity presence was genetically associated with the GSTT1 null genotype and G-allele of NFE2L2 rs6721961, whereas ototoxicity absence was associated with the GSTM1 null genotype. Dose-dependent progression of hearing loss was the greatest in the combined genotype pattern of GSTT1 null and the T/G or G/G variants of rs6721961. CONCLUSION: Early DPOAE changes reflected genetic vulnerability to cisplatin-induced ototoxicity. Hereditary insufficiency of the antioxidant defense system causes severe cisplatin-induced hearing loss and nausea.


Subject(s)
Cisplatin , Hearing Loss , NF-E2-Related Factor 2 , Ototoxicity , Humans , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Cross-Sectional Studies , Deafness/chemically induced , Hearing Loss/chemically induced , Hearing Loss/diagnosis , Hearing Loss/genetics , Nausea/chemically induced , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/pharmacology , Otoacoustic Emissions, Spontaneous , Ototoxicity/etiology , Ototoxicity/genetics , Polymorphism, Genetic , Prospective Studies
10.
Eur J Pediatr ; 183(6): 2625-2636, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492032

ABSTRACT

Neonates face heightened susceptibility to drug toxicity, often exposed to off-label medications with dosages extrapolated from adult or pediatric studies. Premature infants in Neonatal Intensive Care Units (NICUs) are particularly at risk due to underdeveloped pharmacokinetics and exposure to multiple drugs. The study aimed to survey commonly used medications with a higher risk of ototoxicity and nephrotoxicity in Spanish and Italian neonatal units. A prospective cross-sectional study was conducted in Italian and Spanish neonatal units using a web-based survey with 43 questions. A modified Delphi method involved experts refining the survey through online consensus. Ethical approval was obtained, and responses were collected from January to July 2023. The survey covered various aspects, including drug-related ototoxic and nephrotoxic management, hearing screening, and therapeutic drug monitoring. Responses from 131 participants (35.9% from Spain and 64.1% from Italy) revealed awareness of drug toxicity risks. Varied practices were observed in hearing screening protocols, and a high prevalence of ototoxic and nephrotoxic drug use, including aminoglycosides (100%), vancomycin (70.2%), loop diuretics (63.4%), and ibuprofen (62.6%). Discrepancies existed in guideline availability and adherence, with differences between Italy and Spain in therapeutic drug monitoring practices. CONCLUSIONS: The study underscores the need for clinical guidelines and uniform practices in managing ototoxic and nephrotoxic drugs in neonatal units. Awareness is high, but inconsistencies in practices indicate a necessity for standardization, including the implementation of therapeutic drug monitoring and the involvement of clinical pharmacologists. Addressing these issues is crucial for optimizing neonatal care in Southern Europe. WHAT IS KNOWN: • Neonates in intensive care face a high risk of nephrotoxicity and ototoxicity from drugs like aminoglycosides, vancomycin, loop diuretics, and ibuprofen. • Therapeutic drug monitoring is key for managing these risks, optimizing dosing for efficacy and minimizing side effects. WHAT IS NEW: • NICUs in Spain and Italy show high drug toxicity awareness but differ in ototoxic/nephrotoxic drug management. • Urgent need for standard guidelines and practices to address nephrotoxic risks from aminoglycosides, vancomycin, loop diuretics, and ibuprofen.


Subject(s)
Aminoglycosides , Intensive Care Units, Neonatal , Ototoxicity , Vancomycin , Humans , Italy , Infant, Newborn , Intensive Care Units, Neonatal/statistics & numerical data , Cross-Sectional Studies , Prospective Studies , Spain , Aminoglycosides/adverse effects , Ototoxicity/etiology , Vancomycin/adverse effects , Drug Monitoring/methods , Drug Monitoring/statistics & numerical data , Ibuprofen/adverse effects , Sodium Potassium Chloride Symporter Inhibitors/adverse effects , Surveys and Questionnaires , Female , Kidney Diseases/chemically induced , Kidney Diseases/epidemiology , Infant, Premature , Male
12.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414247

ABSTRACT

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Subject(s)
Cisplatin , Ferroptosis , Hearing Loss , Mice, Inbred C57BL , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Cisplatin/adverse effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Ototoxicity/etiology , Ototoxicity/metabolism , Antineoplastic Agents/adverse effects , Apoptosis/drug effects
13.
Therapie ; 79(2): 283-295, 2024.
Article in English | MEDLINE | ID: mdl-37957052

ABSTRACT

Sensorineural hearing loss (SNHL) is the most common type of hearing loss. Causes include degenerative changes in the sensory hair cells, their synapses and/or the cochlear nerve. As human inner ear hair cells have no capacity for regeneration, their destruction is irreversible and leads to permanent hearing loss. SNHL can be genetically inherited or acquired through ageing, exposure to noise or ototoxic drugs. Ototoxicity generally refers to damage to the structures and functions of the inner ear following exposure to specific drugs. Ototoxicity can be multifactorial, causing damage to cochlear hair cells or cells with homeostatic functions that modulate cochlear hair cell function. Clinical strategies to limit ototoxicity include identifying patients at risk, monitoring drug concentrations, performing serial hearing assessments and switching to less ototoxic therapy. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using the PubMed® database. The search terms "ototoxicity", "hearing loss" and "drugs" were combined. We included studies published between September 2013 and June 2023, and focused on medicines and drugs used in hospitals. The review highlighted a number of articles reporting the main drug classes potentially involved: namely, immunosuppressants, antimalarials, vaccines, antibiotics, antineoplastic agents, diuretics, nonsteroidal anti-inflammatory drugs and analgesics. The presumed ototoxic mechanisms were described, together with the therapeutic and preventive options developed over the last ten years.


Subject(s)
Hearing Loss , Ototoxicity , Humans , Cochlea/physiology , Ototoxicity/etiology , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Anti-Bacterial Agents/adverse effects
14.
Clin Otolaryngol ; 49(1): 1-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37818931

ABSTRACT

OBJECTIVES: Ototoxicity is a common disabling side effect of platinum-based chemotherapy. This study aimed to assess the evidence on the management of platinum-induced ototoxicity in adult cancer patients. METHODS: Four databases were searched up to 1 November 2022. Original studies were included if they reported on a pharmacologic or non-pharmacologic intervention to prevent or treat platinum ototoxicity in adults. The articles' quality was assessed via two grading scales. RESULTS: Nineteen randomised controlled trials and five quasi-experimental studies with 1673 patients were analysed. Eleven interventions were identified, nine pharmacological and two non-pharmacological. Six of the interventions (sodium thiosulphate, corticoids, sertraline, statins, multivitamins and D-methionine) showed mild benefits in preventing cisplatin-induced ototoxicity. Only one trial assessed corticoids as a potential treatment. Overall, only six trials were deemed with a low risk of bias. The majority of studies inadequately documented intervention-related adverse effects, thereby limiting safety conclusions. CONCLUSIONS: Current interventions have mild benefits in preventing cisplatin-induced ototoxicity in adult cancer patients. Sodium thiosulphate is the most promising intervention as a preventive strategy. Rigorous, high-quality research is warranted, encompassing an evaluation of all potential symptoms and innovative treatment modalities.


Subject(s)
Antineoplastic Agents , Hearing Loss , Neoplasms , Ototoxicity , Adult , Humans , Cisplatin/therapeutic use , Antineoplastic Agents/therapeutic use , Carboplatin/adverse effects , Ototoxicity/etiology , Ototoxicity/prevention & control , Ototoxicity/drug therapy , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Hearing Loss/drug therapy , Neoplasms/drug therapy , Neoplasms/chemically induced , Adrenal Cortex Hormones/therapeutic use , Randomized Controlled Trials as Topic
15.
J Appl Toxicol ; 44(2): 235-244, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37650462

ABSTRACT

Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.


Subject(s)
Gentamicins , Ototoxicity , Humans , Gentamicins/metabolism , Reactive Oxygen Species/metabolism , PQQ Cofactor/pharmacology , PQQ Cofactor/therapeutic use , PQQ Cofactor/metabolism , Ototoxicity/etiology , Ototoxicity/prevention & control , Ototoxicity/metabolism , Hair Cells, Auditory/metabolism , Anti-Bacterial Agents/metabolism , Apoptosis
16.
Ear Hear ; 45(2): 329-336, 2024.
Article in English | MEDLINE | ID: mdl-37700446

ABSTRACT

OBJECTIVES: To evaluate the extent of hearing loss among pottery workers in Mexico exposed to lead. DESIGN: The authors conducted a cross-sectional study including 315 adult pottery workers. Auditory function was evaluated by air conduction pure-tone audiometry (pure-tone average) and distortion-product otoacoustic emission (DPOAE) levels (amplitude and signal-to-noise ratio). Lead exposure was assessed with a single blood sample test and classified as low, medium, and high according to blood lead tertiles. Logistic regression models were calculated for the association between blood lead levels, pure-tone average, and DPOAE records. RESULTS: Median (25th-75th) blood lead levels were 14 µg/dL (7.5-22.6 µg/dL). The audiometric pattern and DPOAE records were similar across blood lead levels groups in all frequencies, and no statistically significant differences were found. Adjusted logistic regression models showed no increase in the odds for hearing thresholds >25 dB (HL) and DPOAE absence associated with blood lead levels, and no dose-response pattern was observed ( p > 0.05). CONCLUSIONS: Given the results from this cross-sectional study, no association was found between blood lead levels and hearing loss assessed with DPOAE. Future longitudinal work should consider chronic lead exposure estimates among underrepresented populations, which can potentially inform safer work practices to minimize the risk of ototoxicity.


Subject(s)
Deafness , Hearing Loss , Ototoxicity , Adult , Humans , Lead , Ototoxicity/etiology , Cross-Sectional Studies , Auditory Threshold/physiology , Otoacoustic Emissions, Spontaneous/physiology , Hearing Loss/chemically induced , Audiometry, Pure-Tone/methods
17.
Otol Neurotol ; 45(1): e49-e56, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38085767

ABSTRACT

BACKGROUND: The widespread use of aminoglycosides is a prevalent cause of sensorineural hearing loss. Patients receiving aminoglycosides usually have elevated levels of circulating stress hormones due to disease or physiological stress; however, whether the stress hormone cortisol impacts aminoglycoside-mediated injury of cochlear hair cells has not been fully investigated. METHODS: House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with or without cortisol pretreatment were exposed to gentamicin, we investigated the effect of cortisol pretreatment on gentamicin ototoxicity by assessing cell viability. Molecular pathogenesis was explored by detecting apoptosis and oxidative stress. Meanwhile, by inhibiting glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), the potential roles of receptor types in cortisol-mediated sensitization were evaluated. RESULTS: Cortisol concentrations below 75 µmol/l did not affect cell viability. However, pretreatment with 50 µmol/l cortisol for 24 hours sensitized hair cells to gentamicin-induced apoptosis. Further mechanistic studies revealed that cortisol significantly increased hair cell apoptosis and oxidative stress, and altered apoptosis-related protein expressions induced by gentamicin. In addition, blockade of either GR or MR attenuated cortisol-induced hair cell sensitization to gentamicin toxicity. CONCLUSION: Cortisol pretreatment increased mammalian hair cell susceptibility to gentamicin toxicity. Sensitization was related to the activation of the intrinsic apoptotic pathway and excessive generation of reactive oxygen species. Cortisol may exacerbate aminoglycoside ototoxicity.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Hair Cells, Auditory , Hydrocortisone , Ototoxicity , Animals , Humans , Aminoglycosides , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Apoptosis , Gentamicins/adverse effects , Gentamicins/toxicity , Hair Cells, Auditory/drug effects , Hydrocortisone/pharmacology , Mammals/metabolism , Ototoxicity/etiology , Ototoxicity/metabolism , Protein Synthesis Inhibitors , Reactive Oxygen Species/metabolism
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003734

ABSTRACT

Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Deafness , Hearing Loss , Osteosarcoma , Ototoxicity , Humans , Child , Cisplatin/adverse effects , Antineoplastic Agents/adverse effects , Ototoxicity/etiology , Ototoxicity/drug therapy , Hearing Loss/drug therapy , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapy , Inflammation/drug therapy
19.
Cancer ; 129(24): 3952-3961, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37715631

ABSTRACT

BACKGROUND: High-dose carboplatin is an essential part of curative high-dose chemotherapy (HDCT) for patients with previously treated germ cell tumors (GCTs). Although hearing loss (HL) is a known side effect of HDCT, data on its severity and characteristics are limited. METHODS: Eligible patients received HDCT for GCTs from 1993 to 2017 and had audiograms before and after HDCT. HL severity was classified by American Speech-Language-Hearing Association criteria, and mean change in hearing threshold at each frequency (0.25-8 kHz) was estimated from pre- to post-HDCT and between HDCT cycles. RESULTS: Of 115 patients (median age, 32 years), 102 (89%) received three cycles of HDCT. Of 106 patients with normal hearing to mild HL in the speech frequencies (0.5-4 kHz) before HDCT, 70 (66%) developed moderate to profound HL in the speech frequencies after HDCT. Twenty-five patients (22%) were recommended for hearing aids after HDCT. Patients with moderate to profound HL isolated to the higher frequencies (6-8 kHz) before HDCT were more likely to develop moderate to profound HL in the speech frequencies after HDCT (94% vs. 61%; p = .01) and to be recommended for hearing aids (39% vs. 18%; p = .05). CONCLUSIONS: HL was frequent after HDCT for GCTs, with most patients developing at least moderate HL in the speech frequencies and approximately one in five recommended for hearing aids. Moderate to profound HL isolated to high frequencies at baseline was predictive of more clinically significant hearing impairment after HDCT. PLAIN LANGUAGE SUMMARY: Some patients with germ cell tumors, the most common malignancy in adolescent and young adult men, are not cured with standard-dose chemotherapy and require high-dose chemotherapy (HDCT). Using detailed hearing assessments of patients receiving HDCT, we found that most patients developed significant hearing loss and that one in five needed hearing aids. Thus, strategies to reduce this side effect are urgently needed, and all patients receiving HDCT should have a hearing test after therapy.


Subject(s)
Hearing Loss , Neoplasms, Germ Cell and Embryonal , Ototoxicity , Male , Adolescent , Young Adult , Humans , Adult , Carboplatin/adverse effects , Ototoxicity/etiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/etiology , Hearing Loss/chemically induced , Hearing Loss/epidemiology
20.
Arch Toxicol ; 97(11): 2955-2967, 2023 11.
Article in English | MEDLINE | ID: mdl-37608195

ABSTRACT

The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) gene encodes rate-limiting enzyme in cholesterol biosynthesis, which is related to cell proliferation and mitochondrial function. The present study was designed to explore the expression of HMGCR in murine cochlear hair cells and HEI-OC1 cells and the possible mechanisms underpinning the actions of HMGCR in cisplatin-induced ototoxicity, with special attention given to p38 mitogen-activated protein kinase (MAPK) activities in vitro. The expressions of HMGCR, p-p38, cleaved caspase-3 and LC3B was measured by immunofluorescence and western blot. JC-1 staining and MitoSOX Red were used to detect mitochondria membrane potential (MMP) and reactive oxygen species (ROS) levels respectively. The apoptosis of auditory cells was assessed by TUNEL staining and flow cytometry. Protein levels of bcl2/bax and beclin1 were examined by western blot. We found that HMGCR was widely expressed in the auditory cells, of both neonatal mice and 2-month-old mice, in cytoplasm, nucleus and stereocilia. Moreover, 30 µM cisplatin elicited the formation of ROS, which, in turn, led to HMGCR reduction, activating p38 kinase-related apoptosis and autophagy in auditory cells. Meanwhile, co-treatment with ROS scavenger at a concentration of 2 mM, N-acetyl-L-cysteine (NAC), could alleviate the aforementioned changes. In addition, HMGCR silencing resulted in higher p38 MAPK-mediated apoptosis and autophagy under cisplatin injury. Taken together, we demonstrate that, for the first time, that HMGCR is expressed in the cochlear. Furthermore, HMGCR exerts protective benefit on auditory cells against cisplatin-mediated injury stimulated by ROS, culminating in regulation of p38 MAPK-dependent apoptosis and autophagy.


Subject(s)
Ototoxicity , p38 Mitogen-Activated Protein Kinases , Animals , Mice , Cisplatin/toxicity , Ototoxicity/etiology , Ototoxicity/prevention & control , Reactive Oxygen Species , Signal Transduction , Hair Cells, Auditory
SELECTION OF CITATIONS
SEARCH DETAIL
...