Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.761
Filter
1.
PLoS One ; 19(6): e0301509, 2024.
Article in English | MEDLINE | ID: mdl-38935773

ABSTRACT

This paper presents new evidence on knowledge flows in the Beijing-Tianjin-Hebei region of China, involving 43 cities (districts) in the Beijing-Tianjin-Hebei region, based on the invention patent transfer data from the State Intellectual Property Office of China. First, the characteristics of technology flows in the Beijing-Tianjin-Hebei region are analyzed in terms of changes in the number of flows, types of flowing subjects and spatial distribution characteristics. Then, a multi-level patent technology flow network in the Beijing-Tianjin-Hebei region was constructed, and the structural characteristics and node characteristics of each level network were explored separately. The key findings of the study are as follows. (1) The number of patented technology flows has been growing over time, showing obvious phase characteristics during the study period. As a whole, the intra-city (district) technology flow in the Beijing-Tianjin-Hebei region is higher than the inter-city (district). (2) The multi-level patent technology flow network in the Beijing-Tianjin-Hebei region shows dynamic characteristics, with more and more mobile subjects participating in the patent technology flow network, some network nodes becoming closer to each other, and the trend of small group technology flow increasing significantly. (3) Enterprises are the core hub of the patent technology flow network in Beijing-Tianjin-Hebei region. Individual invention patent technology transfer also occupies a high proportion and the participation of universities and colleges in the patent technology flow network in the Beijing-Tianjin-Hebei region is gradually increasing. (4) Over time, the flow of patent technology in the 43 cities (districts) in the Beijing-Tianjin-Hebei region has gradually become active and no longer relies excessively on a particular city (district) for patent technology transfer.


Subject(s)
Patents as Topic , Spatio-Temporal Analysis , China , Patents as Topic/statistics & numerical data , Beijing , Cities , Humans , Technology , Intellectual Property , Technology Transfer , Inventions
2.
PLoS One ; 19(6): e0306186, 2024.
Article in English | MEDLINE | ID: mdl-38923998

ABSTRACT

In almost every country, patents need to be renewed multiple times after they are granted. A patentee assesses the value of the patent and then pays a renewal fee to keep it active for another stipulated period. The factors that characterize the value of a patent is subjective. This paper aims to address the research gap of building an accurate model for predicting the renewal life (often considered as a substitute for the patent value) of Indian patents, and identification of significant factors that influence the renewal life. This study uses an extensive data set collected from the Indian Patent Office for all granted patents filed between 1995 and 2005. The popular statistical and machine learning algorithms do not result in accurate predictive models, because the patent renewal life distribution (at least for the Indian patents) shows unusual spikes at the two extreme values, which makes the modeling task more challenging. We propose a new two-stage hybrid model by combining an efficient multi-class classifier and a binomial regression model for predicting the complex renewal data distribution. We conducted a comparative analysis of the proposed model with several state-of-the-art machine learning and statistical models. The results show that the proposed hybrid model gives 90% accuracy as compared to the best competitor which gives only 40% accuracy.


Subject(s)
Machine Learning , Patents as Topic , Algorithms , Models, Statistical , Humans , India
3.
Expert Opin Ther Pat ; 34(5): 351-363, 2024 May.
Article in English | MEDLINE | ID: mdl-38840307

ABSTRACT

INTRODUCTION: This review offers an updated perspective on the biomedical applications of prokaryotic carbonic anhydrases (CAs), emphasizing their potential as targets for drug development against antibiotic-resistant bacterial infections. A systematic review of literature from PubMed, Web of Science, and Google Scholar has been conducted to provide a comprehensive analysis. AREA COVERED: It delves into the pivotal roles of prokaryotic CAs in bacterial metabolism and their distinctions from mammalian CAs. The review explores the diversity of CA classes in bacteria, discusses selective inhibitors targeting bacterial CAs, and explores their potential applications in biomedical research. Furthermore, it analyzes clinical trials investigating the efficacy of carbonic anhydrase inhibitors (CAIs) and patented approaches for developing antibacterial CAIs, highlighting their translational potential in creating innovative antibacterial agents. EXPERT OPINION: Recent years have witnessed increased recognition of CA inhibition as a promising strategy against bacterial infections. Challenges persist in achieving selectivity over human isoforms and optimizing therapeutic efficacy. Structural biology techniques provide insights into unique active site architectures, guiding selective inhibitor design. The review underscores the importance of interdisciplinary collaborations, innovative drug delivery systems, and advanced drug discovery approaches in unlocking the full therapeutic potential of prokaryotic CA inhibitors. It emphasizes the significance of these efforts in addressing antibiotic resistance and improving patient outcomes.


Subject(s)
Anti-Bacterial Agents , Bacteria , Bacterial Infections , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Drug Design , Drug Development , Animals , Humans , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/drug effects , Drug Delivery Systems , Drug Discovery , Drug Resistance, Bacterial , Patents as Topic
4.
Expert Opin Ther Pat ; 34(4): 273-295, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38873766

ABSTRACT

INTRODUCTION: Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors. AREA COVERED: This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme. EXPERT OPINION: HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.


Subject(s)
Drug Design , Histone Deacetylase Inhibitors , Histone Deacetylases , Patents as Topic , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Histone Deacetylases/drug effects , Animals , Drug Development , Computer-Aided Design , Zinc/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism
5.
Expert Opin Ther Pat ; 34(4): 187-209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38920057

ABSTRACT

INTRODUCTION: Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases. AREAS COVERED: The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023. EXPERT OPINION: The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.


Subject(s)
Drug Design , Drug Development , Drug Discovery , Enzyme Inhibitors , Patents as Topic , Protein Tyrosine Phosphatases , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Signal Transduction/drug effects , Phosphorylation , Allosteric Site , Protein Processing, Post-Translational
6.
Expert Opin Ther Pat ; 34(7): 565-582, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861278

ABSTRACT

INTRODUCTION: Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED: By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION: Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.


Subject(s)
Antineoplastic Agents , Cytokines , Enzyme Inhibitors , NAD , Neoplasms , Nicotinamide Phosphoribosyltransferase , Patents as Topic , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Animals , NAD/metabolism , Antineoplastic Agents/pharmacology , Cytokines/metabolism , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Drug Development , Drug Design
8.
Expert Opin Ther Pat ; 34(4): 263-271, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38828613

ABSTRACT

INTRODUCTION: The purinergic P2X7 receptor (P2X7R) is expressed on the surface of many different types of cells, including immune cells. Targeting P2X7R with antagonists has been studied for its potential therapeutic effects in a variety of inflammatory illnesses. AREA COVERED: Many chemical substances, including carboxamides, benzamides and nitrogen containing heterocyclic derivatives have demonstrated promising inhibitory potential for P2X7 receptor. The chemistry and clinical applications of P2X7R antagonists patented from 2018- present are discussed in this review. EXPERT OPINION: Purinergic receptor inhibitor discovery and application has demonstrated the potential for therapeutic intervention, as demonstrated by pharmacological research. Few chemical modalities have been authorized for use in clinical settings, despite the fact that breakthroughs in crystallography and chemical biology have increased the knowledge of purinergic signaling and its consequences in disease. The many research projects and pharmaceutical movements that sustain dynamic P2X receptor programs over decades are evidence of the therapeutic values and academic persistence in purinergic study. P2X7R is an intriguing therapeutic target and possible biomarker for inflammation. Although several companies like Merck and AstraZeneca have published patents on P2X3 antagonists, the search for P2X7R antagonists has not stopped. Numerous pharmaceutical companies have disclosed different scaffolds, and some molecules are presently being studied in clinical studies.


Subject(s)
Inflammation , Patents as Topic , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Humans , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/drug effects , Purinergic P2X Receptor Antagonists/pharmacology , Animals , Inflammation/drug therapy , Inflammation/physiopathology , Drug Development , Anti-Inflammatory Agents/pharmacology
9.
Expert Opin Ther Pat ; 34(5): 333-350, 2024 May.
Article in English | MEDLINE | ID: mdl-38836316

ABSTRACT

INTRODUCTION: Breast cancer is the most frequently diagnosed cancer worldwide. With around 70% of breast cancers expressing the estrogen receptor (ER), molecules capable of antagonizing and degrading ER (SERDs) or covalently binding to and antagonizing ER (SERCAs) are at the forefront of efforts to bring better treatments to patients. AREAS COVERED: This review summarizes patent applications that claim estrogen receptor degraders (SERDs) and covalent antagonists (SERCAs) identified using SciFinder between the period July 2021 to December 2023. A total of 91 new patent applications from 32 different applicants are evaluated with stratification into acidic SERDs, basic SERDs, SERCAs and miscellaneous degraders. EXPERT OPINION: The widespread adoption of fulvestrant in the treatment of ER+ breast cancer continues to stimulate research into orally bioavailable SERDs and SERCAs. A number of molecules have entered clinical development and, although some have been discontinued, a cohort of potential new treatments have generated encouraging efficacy and safety data. Notably, the first example of an oral SERD, elacestrant, has now been approved by the FDA and EMA, providing further encouragement for this class of targeted therapies.


Subject(s)
Breast Neoplasms , Drug Development , Patents as Topic , Receptors, Estrogen , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Animals , Female , Receptors, Estrogen/metabolism , Estrogen Receptor Antagonists/pharmacology , Molecular Targeted Therapy , Selective Estrogen Receptor Modulators/pharmacology , Antineoplastic Agents, Hormonal/pharmacology
10.
Expert Opin Ther Pat ; 34(5): 365-382, 2024 May.
Article in English | MEDLINE | ID: mdl-38842051

ABSTRACT

INTRODUCTION: PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer. AREAS COVERED: A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted. EXPERT OPINION: Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Patents as Topic , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Humans , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Antineoplastic Agents/pharmacology , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Molecular Targeted Therapy , Drug Development , Drug Design , Protein Serine-Threonine Kinases
11.
Expert Opin Ther Pat ; 34(5): 383-396, 2024 May.
Article in English | MEDLINE | ID: mdl-38842843

ABSTRACT

INTRODUCTION: SHP2 (Src homology region 2-containing protein tyrosine phosphatase 2) is a target of interest for cancer therapy due to its key role in the regulation of the RAS/MAPK signal transduction pathway downstream of Receptor Tyrosine Kinases (RTKs). Moreover, SHP2 can inhibit T cells via the PD-1/PD-L1 pathway. SHP2 plays a critical role in numerous physiological and pathological cellular processes, such as cell proliferation, survival, and migration. AREAS COVERED: This review examines SHP2 allosteric inhibitors reported in patents published in Espacenet and Scifinder databases from 2018 to present. An overview of claimed structures is conducted, focusing attention on structural modifications compared to SHP099, the first described allosteric inhibitor of SHP2. EXPERT OPINION: Multiple potent allosteric SHP2 inhibitors have been discovered, disclosed, and tested in a variety of preclinical cancer models with strong evidence of efficacy. Fifteen compounds are currently in clinical development, but none of them have been approved for marketing. Until now, long-term benefit of SHP2 inhibitors as monotherapy agents have not been demonstrated due to acquired mechanisms of resistance and/or lack of efficacy. However, combination therapies with a variety of agents, such as MEK, BRAF, EGFR, RAS-G12C and PDL-1 inhibitors, have high potential and are currently an extensive area of investigation.


Subject(s)
Antineoplastic Agents , Drug Development , Neoplasms , Patents as Topic , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Allosteric Regulation/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects
12.
Expert Opin Ther Pat ; 34(5): 315-332, 2024 May.
Article in English | MEDLINE | ID: mdl-38847054

ABSTRACT

INTRODUCTION: TRPA1 is a nonselective calcium channel, a member of the transient receptor potential (TRP) superfamily, also referred to as the 'irritant' receptor, being activated by pungent and noxious exogenous chemicals as well as by endogenous algogenic stimuli, to elicit pain, itching, and inflammatory conditions. For this reason, it is considered an attractive therapeutic target to treat a wide range of diseases including acute and chronic pain, itching, and inflammatory airway diseases. AREAS COVERED: The present review covers patents on TRPA1 antagonists disclosed from 2020 to present, falling in the following main classes: i) novel therapeutic applications for known or already disclosed antagonists, ii) identification and characterization of TRPA1 antagonists from natural sources, and iii) synthesis and evaluation of novel compounds. EXPERT OPINION: Despite the limited number of TRPA1 antagonists in clinical trials, there is an ever-growing interest on this receptor-channel as therapeutic target, mainly due to the relevant outcomes from basic research, which unveiled novel physio-pathological mechanisms where TRPA1 is believed to play a pivotal role, for example the Alzheimer's disease or ocular diseases, expanding the panel of potential therapeutic applications for TRPA1 modulators.


Subject(s)
Patents as Topic , TRPA1 Cation Channel , Humans , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/metabolism , Animals , Pain/drug therapy , Pain/physiopathology , Inflammation/drug therapy , Inflammation/physiopathology , Drug Development
13.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Article in English | MEDLINE | ID: mdl-38849323

ABSTRACT

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Subject(s)
Antineoplastic Agents , Membrane Proteins , Neoplasms , Patents as Topic , Humans , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Membrane Proteins/agonists , Membrane Proteins/metabolism , Membrane Proteins/genetics , Immunity, Innate/drug effects , Immunotherapy/methods
14.
Expert Opin Ther Pat ; 34(6): 511-524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856987

ABSTRACT

INTRODUCTION: Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED: New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION: By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.


Subject(s)
Anti-Bacterial Agents , Drug Repositioning , Drug Resistance, Bacterial , Gonorrhea , Neisseria gonorrhoeae , Patents as Topic , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/enzymology , Anti-Bacterial Agents/pharmacology , Humans , Animals , Gonorrhea/drug therapy , Gonorrhea/microbiology , Topoisomerase II Inhibitors/pharmacology , Oxazolidinones/pharmacology , Microbial Sensitivity Tests , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , DNA Gyrase/metabolism , Morpholines , Isoxazoles , Spiro Compounds , Heterocyclic Compounds, 3-Ring , Barbiturates , Acenaphthenes
16.
PLoS One ; 19(6): e0304888, 2024.
Article in English | MEDLINE | ID: mdl-38829871

ABSTRACT

In order to reveal the current status and future trends of lubricant additives, this study analyzes the structured and unstructured data of 77701 lubricant additive patents recorded by Patsnap. The results show that China is the country with the largest number of patents in this field, and the United States is the main exporting country of international technology flow; the current research and development of lubricant additives is dominated by multifunctional composite additives; environmentally friendly additive compositions are the current research hotspot; and more environmentally friendly and economically degradable additives have more development potential in the future. Overall, this study provides a comprehensive understanding of the research and application of lubricant additives and contributes to the future development of the lubricant industry.


Subject(s)
Lubricants , Patents as Topic , Lubricants/chemistry , China , United States
17.
Ann N Y Acad Sci ; 1536(1): 177-187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837420

ABSTRACT

Significant advancements in public health come from scientific discoveries, but more are needed to meet the ever-growing societal needs. Examining the best practices of outstanding scientists may help develop future researchers and lead to more discoveries. This study compared the comprehensive work of 49 Nobel laureates in Physiology or Medicine from 2000 to 2019 to a matched control of National Institutes of Health (NIH)-funded biomedical investigators. Our unique data set, comprising 11,737 publications, 571 US patents, and 1693 NIH research awards produced by pre-Nobel laureates, was compared to a similar data set of control researchers. Compared to control researchers, pre-Nobel laureates produce significantly more publications annually (median = 5.66; interquartile range [IQR] = 5.16); significantly fewer coauthors per publication (median = 3.32; IQR = 1.95); consistently higher Journal Impact Factor publications (median = 12.04; IQR = 6.83); and substantially more patents per researcher (median = 5; IQR = 14). Such differences arose from nearly identical cumulative NIH award budgets of pre-Nobel laureates (median $25.3 M) and control researchers. Nobel laureates are neither hyper-prolific (>72 papers per year) nor hyper-funded (>$100 M cumulative). An academic age-specific trajectory graph allows aspiring researchers to compare their productivity and collaboration patterns to those of pre-Nobel laureates.


Subject(s)
Biomedical Research , National Institutes of Health (U.S.) , Nobel Prize , Humans , Biomedical Research/trends , United States , Research Personnel , Patents as Topic
19.
Med Oncol ; 41(7): 173, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864966

ABSTRACT

Erlotinib (ELB) is a tyrosine kinase inhibitor that targets the activity of Epidermal Growth Factor Receptor (EGFR) protein found in both healthy and cancerous cells. It binds reversibly to the ATP-binding site of the EGFR tyrosine kinase. ELB was approved by the US Food and Drug Administration (FDA) in 2004 for advanced non-small cell lung cancer (NSCLC) treatment in patients who relapsed after at least one other therapy. It was authorized for use with gemcitabine in 2005 for the treatment of advanced pancreatic cancer. In addition to lung cancer, ELB has shown promising results in the treatment of other cancers, including breast, prostate, colon, pancreatic, cervical, ovarian, and head and neck cancers. However, its limited water solubility, as a BCS class II drug, presents biopharmaceutical problems. Nanoformulations have been developed to overcome these issues, including increased solubility, controlled release, enhanced stability, tumor accumulation, reduced toxicity, and overcoming drug resistance. In older patients, ELB management should involve individualized dosing based on age-related changes in drug metabolism and close monitoring for adverse effects. Regular assessments of renal and hepatic functions are essential. This review provides an overview of ELB's role of ELB in treating various cancers, its associated biopharmaceutical issues, and the latest developments in ELB-related nanotechnology interventions. It also covers ELB patents granted in previous years and the ongoing clinical trials.


Subject(s)
Clinical Trials as Topic , Erlotinib Hydrochloride , Neoplasms , Protein Kinase Inhibitors , Humans , Erlotinib Hydrochloride/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Nanotechnology/methods , Patents as Topic , ErbB Receptors/antagonists & inhibitors
20.
PLoS One ; 19(6): e0304560, 2024.
Article in English | MEDLINE | ID: mdl-38861522

ABSTRACT

Academic freedom is a critical norm of science. Despite the widely postulated importance of academic freedom, the literature attests to a dearth of research on the topic. Specifically, we know little about how academic freedom relates to indicators of societal progress, such as innovation. We address this research gap by empirically assessing the impact of academic freedom on the quantity (patent applications) and quality (patent citations) of innovation output using a comprehensive sample of 157 countries over the 1900-2015 period. We find that improving academic freedom by one standard deviation increases patent applications by 41% and forward citations by 29%. The results are robust across a range of different specifications. Our findings constitute an alarming plea to policymakers: global academic freedom has declined over the past decade for the first time in the last century and our estimates suggest that this decline poses a substantial threat to the innovation output of countries in terms of both quantity and quality.


Subject(s)
Freedom , Humans , Patents as Topic , Inventions , Science
SELECTION OF CITATIONS
SEARCH DETAIL
...