Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.033
Filter
1.
Sci Rep ; 14(1): 18587, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127763

ABSTRACT

Phenol soluble modulins (PSMs) are small amphipathic peptides involved in a series of biological functions governing staphylococcal pathogenesis, primarily by facilitating the formation of an extracellular fibril structure with amyloid-like properties. This fibrillar architecture stabilizes the staphylococcal biofilm making it resilient to antibiotic treatment. Our study aims to abrogate the amyloid fibrillation of PSM α1 with novel insights on the amyloid modulatory potential of a prenylated chalcone, Isobavachalcone (IBC). A combination of biophysical and computational assays to address the amyloid modulatory effect of IBC has been undertaken to arrive at a model for the inhibition of PSM α1 fibrillation. ThT kinetics studies indicated that IBC must be stably interacting with the amyloidogenic core of PSM α1 monomers or it may be inhibiting the pre-fibrillar aggregates populated at the early stages of amyloid transformation kinetics. This heteromolecular association further inhibits the amyloid transformation corroborated by a ∼ 94% and ∼ 91% reduction in the ThT maxima, even at sub-stoichiometric concentrations. Transmission electron microscopy (TEM) of end-stage aggregates (∼ 55 h) depict mature, inter-twined, laterally stacked amyloid fibrils in untreated PSM α1 samples while this fibrillar load is remarkably reduced in the presence of IBC. The inhibitory effect of IBC on the ß-sheet transitions of PSM α1 were also validated using far-UV CD spectra. Molecular dynamics simulation studies with PSM aggregates (PSM-A) have also suggested that IBC disrupts the hydrogen bonding interactions and corroborates the inhibition of alpha to beta transitions of PSM-A. Collectively, our data proposes a novel structural motif for the rational discovery of non-toxic therapeutic agents targeting the functional amyloids which have slowly emerged as potent factors, consolidating the antibiotic resistant staphylococcal biofilm assembly.


Subject(s)
Amyloid , Chalcones , Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/metabolism , Amyloid/metabolism , Amyloid/chemistry , Molecular Dynamics Simulation , Kinetics , Prenylation , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Biofilms/drug effects , Bacterial Toxins
2.
J Cell Biol ; 223(10)2024 10 07.
Article in English | MEDLINE | ID: mdl-39007804

ABSTRACT

To breach the basement membrane, cells in development and cancer use large, transient, specialized lipid-rich membrane protrusions. Using live imaging, endogenous protein tagging, and cell-specific RNAi during Caenorhabditis elegans anchor cell (AC) invasion, we demonstrate that the lipogenic SREBP transcription factor SBP-1 drives the expression of the fatty acid synthesis enzymes POD-2 and FASN-1 prior to invasion. We show that phospholipid-producing LPIN-1 and sphingomyelin synthase SMS-1, which use fatty acids as substrates, produce lysosome stores that build the AC's invasive protrusion, and that SMS-1 also promotes protrusion localization of the lipid raft partitioning ZMP-1 matrix metalloproteinase. Finally, we discover that HMG-CoA reductase HMGR-1, which generates isoprenoids for prenylation, localizes to the ER and enriches in peroxisomes at the AC invasive front, and that the final transmembrane prenylation enzyme, ICMT-1, localizes to endoplasmic reticulum exit sites that dynamically polarize to deliver prenylated GTPases for protrusion formation. Together, these results reveal a collaboration between lipogenesis and a polarized lipid prenylation system that drives invasive protrusion formation.


Subject(s)
Basement Membrane , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Endoplasmic Reticulum , Lipogenesis , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Basement Membrane/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Endoplasmic Reticulum/metabolism , Lipogenesis/genetics , Prenylation , Peroxisomes/metabolism , Cell Movement , Lysosomes/metabolism
3.
Bioorg Med Chem ; 110: 117838, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39018794

ABSTRACT

Prenylation (isopentenylation), a key post-transcriptional modification with a hydrophobic prenyl group onto the biomacromolecules such as RNA and proteins, influences their localization and function. Prenyltransferases mediate this process, while cytokinin oxidases degrade the prenylated adenosine in plants. This review summarizes current progress in detecting prenylation modifications in RNA across species and their effects on protein synthesis. Advanced methods have been developed to label and study these modifications in vitro and in vivo, despite challenges posed by the inert chemical properties of prenyl groups. Continued advancements in bioorthogonal chemistry promise new tools for understanding the precise biological functions of prenylated RNA modifications and other related proteins.


Subject(s)
Isopentenyladenosine , Isopentenyladenosine/metabolism , Isopentenyladenosine/chemistry , RNA/metabolism , RNA/chemistry , Prenylation , Humans , Animals , Adenosine/metabolism , Adenosine/chemistry
4.
Fitoterapia ; 177: 106112, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971332

ABSTRACT

Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin­copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.


Subject(s)
Antioxidants , Fruit , Isoflavones , Maclura , Fruit/chemistry , Isoflavones/pharmacology , Isoflavones/isolation & purification , Isoflavones/chemistry , Maclura/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/isolation & purification , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Prenylation , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Animals , Phenols/pharmacology , Phenols/isolation & purification , Benzopyrans
5.
Appl Microbiol Biotechnol ; 108(1): 421, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023782

ABSTRACT

Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.


Subject(s)
Amino Acids, Aromatic , Dimethylallyltranstransferase , Phenols , Prenylation , Amino Acids, Aromatic/metabolism , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Phenols/metabolism , Substrate Specificity , Stilbenes/metabolism , Tryptophan/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
6.
Am J Chin Med ; 52(4): 1087-1135, 2024.
Article in English | MEDLINE | ID: mdl-38864547

ABSTRACT

Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.


Subject(s)
Flavonoids , Prenylation , Sophora , Sophora/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Humans , Structure-Activity Relationship , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Phytotherapy , Sophora flavescens
7.
Phytochemistry ; 223: 114119, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705266

ABSTRACT

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Subject(s)
Diketopiperazines , Talaromyces , Talaromyces/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Diketopiperazines/isolation & purification , Humans , Molecular Structure , Prenylation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Indole Alkaloids/isolation & purification , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Hep G2 Cells , Cell Proliferation/drug effects , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Cell Line, Tumor
8.
Phytochemistry ; 224: 114149, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763314

ABSTRACT

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 µM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 µM and 1F4 with IC50 value at 30.09 ± 0.59 µM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 µM in α-glucosidase inhibitory assays.


Subject(s)
Aspergillus , Chalcones , Dimethylallyltranstransferase , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/antagonists & inhibitors , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/metabolism , Aspergillus/enzymology , Aspergillus/chemistry , Molecular Structure , Prenylation , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Dose-Response Relationship, Drug
9.
J Antibiot (Tokyo) ; 77(7): 403-411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750250

ABSTRACT

Two new cyclic dipeptides, paranazzamides A (1) and B (2) containing a C7-prenylated tryptophan, were isolated from a culture broth of snake fungal disease-isolate Paranannizziopsis sp. UH-21. This is the first report on the new secondary metabolites from Paranannizziopsis sp. The planar structures of 1 and 2 were elucidated using various spectroscopic techniques including MS and 1D/2D NMR. The absolute configuration of 1 was assigned by comparison with the synthesized compound. Compounds 1 and 2 exhibited no antifungal activity, no antibacterial activity, and no cytotoxic activity even at a concentration of 128 µg ml-1, whereas 1 and 2 exhibited amphotericin B potentiating activity against Candida auris in combination treatment.


Subject(s)
Dipeptides , Peptides, Cyclic , Tryptophan , Tryptophan/chemistry , Tryptophan/metabolism , Dipeptides/chemistry , Dipeptides/isolation & purification , Dipeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/isolation & purification , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Candida/drug effects , Prenylation , Amphotericin B/pharmacology , Molecular Structure , Humans
10.
Plant Physiol Biochem ; 210: 108596, 2024 May.
Article in English | MEDLINE | ID: mdl-38579541

ABSTRACT

The peanut plant is one of the most economically important crops around the world. Abiotic stress, such as drought, causes over five hundred million dollars in losses in peanut production per year. Peanuts are known to produce prenylated stilbenoids to counteract biotic stress. However, their role in abiotic stress tolerance has not been elucidated. To address this issue, hairy roots with the capacity to produce prenylated stilbenoids were established. An RNA-interference (RNAi) molecular construct targeting the stilbenoid-specific prenyltransferase AhR4DT-1 was designed and expressed via Agrobacterium rhizogenes-mediated transformation in hairy roots of peanut cultivar Georgia Green. Two transgenic hairy roots with the RNAi molecular construct were established, and the downregulation of AhR4DT-1 was validated using reverse transcriptase quantitative PCR. To determine the efficacy of the RNAi-approach in modifying the levels of prenylated stilbenoids, the hairy roots were co-treated with methyl jasmonate, hydrogen peroxide, cyclodextrin, and magnesium chloride to induce the production of stilbenoids and then the stilbenoids were analyzed in extracts of the culture medium. Highly reduced levels of prenylated stilbenoids were observed in the RNAi hairy roots. Furthermore, the hairy roots were evaluated in a polyethylene glycol (PEG) assay to assess the role of prenylated stilbenoids on water-deficit stress. Upon PEG treatment, stilbenoids were induced and secreted into the culture medium of RNAi and wild-type hairy roots. Additionally, the biomass of the RNAi hairy roots decreased by a higher amount as compared to the wild-type hairy roots suggesting that prenylated stilbenoids might play a role against water-deficit stress.


Subject(s)
Arachis , Biomass , Plant Roots , Stilbenes , Arachis/genetics , Arachis/metabolism , Arachis/enzymology , Plant Roots/metabolism , Plant Roots/genetics , Stilbenes/metabolism , Down-Regulation , Plants, Genetically Modified , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Dehydration , Droughts , Stress, Physiological , Gene Expression Regulation, Plant , RNA Interference , Oxylipins/metabolism , Water/metabolism , Prenylation
11.
J Nat Prod ; 87(5): 1454-1458, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38668715

ABSTRACT

Collembola are closely related to insects, but our knowledge of their often unique chemistry is limited. Here we report the identification of the epicuticular lipid nitidane, representing a novel class of epicuticular lipids. Nitidane (4) is an irregular terpene consisting of seven isoprene units, made up of a diterpene core that is modified by a geranyl moiety that is itself prenylated. The observed [46+(22+11)1]-terpene structure has not been reported before.


Subject(s)
Diterpenes , Animals , Diterpenes/chemistry , Diterpenes/isolation & purification , Molecular Structure , Prenylation , Lipids/chemistry
12.
J Agric Food Chem ; 72(14): 8018-8026, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557039

ABSTRACT

Phloretin is widely found in fruit and shows various biological activities. Here, we demonstrate the dimethylallylation, geranylation, and farnesylation, particularly the first dimethylallylation at the nonaromatic carbon of phloretin (1) by the fungal prenyltransferase AnaPT and its mutants. F265 was identified as a key amino acid residue related to dimethylallylation at the nonaromatic carbon of phloretin. Mutants AnaPT_F265D, AnaPT_F265G, AnaPT_F265P, AnaPT_F265C, and AnaPT_F265Y were discovered to generally increase prenylation activity toward 1. AnaPT_F265G catalyzes the O-geranylation selectively at the C-2' hydroxyl group, which involves an intramolecular hydrogen bond with the carbonyl group of 1. Seven products, 1D5, 1D7-1D9, 1G2, 1G4, and 1F2, have not been reported prior to this study. Twelve compounds, 1D3-1D9, 1G1-1G3, and 1F1-1F2, exhibited potential inhibitory effects on α-glucosidase with IC50 values ranging from 11.45 ± 0.87 to 193.80 ± 6.52 µg/mL. Among them, 1G1 with an IC50 value of 11.45 ± 0.87 µg/mL was the most potential α-glucosidase inhibitor, which is about 30 times stronger than the positive control acarbose with an IC50 value of 346.63 ± 15.65 µg/mL.


Subject(s)
Dimethylallyltranstransferase , Phloretin , Phloretin/pharmacology , Indoles/chemistry , Carbon , Catalysis , Prenylation
13.
Org Lett ; 26(16): 3349-3354, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38607994

ABSTRACT

UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.


Subject(s)
Diketopiperazines , Dimethylallyltranstransferase , Prenylation , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Molecular Structure , Multigene Family
14.
Plant Physiol ; 195(4): 2860-2876, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38502063

ABSTRACT

Anthraquinones (AQs) constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, AQs are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type AQs, and the prenylation of 1,4-dihydroxy-2-naphthoic acid (DHNA) is the first pathway-specific step. However, the prenyltransferase (PT) responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type AQs, was discovered to be capable of prenylating DHNA to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifoliadimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the AQs content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type AQs biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type AQs biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.


Subject(s)
Anthraquinones , Dimethylallyltranstransferase , Rubia , Anthraquinones/metabolism , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Rubia/metabolism , Rubia/genetics , Rubia/enzymology , Substrate Specificity , Plant Proteins/metabolism , Plant Proteins/genetics , Naphthols/metabolism , Naphthoquinones/metabolism , Prenylation , Gene Expression Regulation, Plant
15.
Chem Biodivers ; 21(5): e202400491, 2024 May.
Article in English | MEDLINE | ID: mdl-38470945

ABSTRACT

We have evaluated eight p-coumaric acid prenylated derivatives in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and their antischistosomal activity against Schistosoma mansoni adult worms. Compound 7 ((E)-3,4-diprenyl-4-isoprenyloxycinnamic alcohol) was the most active against L. amazonensis (IC50=45.92 µM) and S. mansoni (IC50=64.25 µM). Data indicated that the number of prenyl groups, the presence of hydroxyl at C9, and a single bond between C7 and C8 are important structural features for the antileishmanial activity of p-coumaric acid prenylated derivatives.


Subject(s)
Antiprotozoal Agents , Coumaric Acids , Leishmania , Parasitic Sensitivity Tests , Schistosoma mansoni , Animals , Schistosoma mansoni/drug effects , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Leishmania/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Structure-Activity Relationship , Prenylation , Propionates/pharmacology , Propionates/chemistry , Molecular Structure , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/chemical synthesis , Dose-Response Relationship, Drug
16.
Appl Microbiol Biotechnol ; 108(1): 275, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530470

ABSTRACT

Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, ß-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, ß-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.


Subject(s)
Dimethylallyltranstransferase , Diterpenes , Hypocreales , Dimethylallyltranstransferase/metabolism , Prenylation , Indoles/metabolism , Diterpenes/metabolism , Substrate Specificity
17.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358770

ABSTRACT

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Subject(s)
Alkaloids , Flavanones , Sophora , Mice , Animals , Flavonoids/chemistry , Sophora flavescens , Sophora/chemistry , Flavanones/pharmacology , Flavanones/chemistry , Prenylation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines , Chemokines
18.
Phytochemistry ; 220: 114016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364882

ABSTRACT

Formohyperins A-F, previously undescribed meroterpenes, and grandone, a prenylated benzoylphloroglucinol being considered to be one of their biogenetic precursors, were isolated from the flowers of a Hypericaceous plant, Hypericum formosanum Maxim. Detailed spectroscopic analyses showed that formohyperins A-D were meroterpenes with an enolized 3-phenylpropane-1,3-dione moiety. Formohyperins E and F were elucidated as meroterpenes having a 4-benzoyl-5-hydroxycyclopent-4-ene-1,3-dione moiety. Formohyperins A-C and E were optically active, and their absolute configurations were deduced by comparison of the experimental and TDDFT calculated ECD spectra. In contrast, formohyperin D was concluded to be a racemate. Formohyperins A-F and grandone were found to show inhibitory activities against LPS-stimulated IL-1ß production from murine microglial cells with EC50 values of 13.2, 6.6, 8.5, 24.3, 4.1, 10.9, and 3.0 µM, respectively.


Subject(s)
Hypericum , Phloroglucinol , Mice , Animals , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Hypericum/chemistry , Flowers , Microglia , Prenylation , Molecular Structure
19.
Biol Pharm Bull ; 47(2): 449-453, 2024.
Article in English | MEDLINE | ID: mdl-38369346

ABSTRACT

CsPT4 is an aromatic prenyltransferase that synthesizes cannabigerolic acid (CBGA), the key intermediate of cannabinoid biosynthesis in Cannabis sativa, from olivetolic acid (OA) and geranyl diphosphate (GPP). CsPT4 has a catalytic potential to produce a variety of CBGA analogs via regioselective C-prenylation of aromatic substrates having resorcylic acid skeletons including bibenzyl 2,4-dihydroxy-6-phenylethylbenzoic acid (DPA). In this study, we further investigated the substrate specificity of CsPT4 using phlorocaprophenone (PCP) and 2',4',6'-trihydroxydihydrochalcone (THDC), the isomers of OA and DPA, respectively, and demonstrated that CsPT4 catalyzed both C-prenylation and O-prenylation reactions on PCP and THDC that share acylphloroglucinol substructures. Interestingly, the kinetic parameters of CsPT4 for these substrates differed depending on whether they underwent C-prenylation or O-prenylation, suggesting that this enzyme utilized different substrate-binding modes suitable for the respective reactions. Aromatic prenyltransferases that catalyze O-prenylation are rare in the plant kingdom, and CsPT4 was notable for altering the reaction specificity between C- and O-prenylations depending on the skeletons of aromatic substrates. We also demonstrated that enzymatically synthesized geranylated acylphloroglucinols had potent antiausterity activity against PANC-1 human pancreatic cancer cells, with 4'-O-geranyl THDC being the most effective. We suggest that CsPT4 is a valuable catalyst to generate biologically active C- and O-prenylated molecules that could be anticancer lead compounds.


Subject(s)
Cannabis , Dimethylallyltranstransferase , Humans , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Prenylation , Catalysis , Substrate Specificity
20.
J Nat Prod ; 87(3): 576-582, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38231181

ABSTRACT

Prenyltransferases (PTs) are involved in the biosynthesis of a multitude of pharmaceutically and agriculturally important plant, bacterial, and fungal compounds. Although numerous prenylated compounds have been isolated from Basidiomycota (mushroom-forming fungi), knowledge of the PTs catalyzing the transfer reactions in this group of fungi is scarce. Here, we report the biochemical characterization of an O- and C-prenylating dimethylallyltryptophan synthase (DMATS)-like enzyme LpTyrPT from the scurfy deceiver Laccaria proxima. This PT transfers dimethylallyl moieties to l-tyrosine at the para-O position and to l-tryptophan at atom C-7 and represents the first basidiomycete l-tyrosine PT described so far. Phylogenetic analysis of PTs in fungi revealed that basidiomycete l-tyrosine PTs have evolved independently from their ascomycete counterparts and might represent the evolutionary origin of PTs acting on phenolic compounds in secondary metabolism.


Subject(s)
Basidiomycota , Dimethylallyltranstransferase , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Phylogeny , Tyrosine , Basidiomycota/genetics , Basidiomycota/metabolism , Prenylation
SELECTION OF CITATIONS
SEARCH DETAIL