Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.515
Filter
2.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899522

ABSTRACT

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Subject(s)
Cellular Senescence , Chemokine CCL5 , Endothelial Progenitor Cells , MicroRNAs , Neovascularization, Physiologic , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Neovascularization, Physiologic/genetics , Mice , Cell Proliferation , Male , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Down-Regulation/genetics , Ischemia/metabolism , Ischemia/pathology , Ischemia/genetics , Signal Transduction , Angiogenesis
3.
Cell Rep ; 43(6): 114317, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38848213

ABSTRACT

Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.


Subject(s)
CD4-Positive T-Lymphocytes , Cell Differentiation , Malaria , Phenotype , Animals , Malaria/immunology , Malaria/parasitology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , Th1 Cells/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Spleen/immunology
4.
Microbiol Spectr ; 12(7): e0389523, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809042

ABSTRACT

The susceptibility of genetically divergent HIV-1 strains (HIV-1 non-M) from groups O, N, and P to the CCR5 co-receptor antagonist, maraviroc (MVC), was investigated among a large panel of 45 clinical strains, representative of the viral genetic diversity. The results were compared to the reference strains of HIV-1 group M (HIV-1/M) with known tropism. Among the non-M strains, a wide range of phenotypic susceptibilities to MVC were observed. The large majority of HIV-1/O strains (40/42) displayed a high susceptibility to MVC, with median and mean IC50 values of 1.23 and 1.33 nM, respectively, similar to the HIV-1/M R5 strain (1.89 nM). However, the two remaining HIV-1/O strains exhibited a lower susceptibility (IC50 at 482 and 496 nM), in accordance with their dual/mixed (DM) tropism. Interestingly, the two HIV-1/N strains demonstrated varying susceptibility patterns, despite always having relatively low IC50 values (2.87 and 47.5 nM). This emphasized the complexity of determining susceptibility solely based on IC50 values. Our study examined the susceptibility of all HIV-1 non-M groups to MVC and correlated these findings with virus tropism (X4, R5, or DM). The results confirm the critical significance of tropism determination before initiating MVC treatment in patients infected with HIV-1 non-M. Furthermore, we advocate for the consideration of additional parameters, such as the slope of inhibition curves, to provide a more thorough characterization of phenotypic susceptibility profiles. IMPORTANCE: Unlike HIV-1 group M, the scarcity of studies on HIV-1 non-M groups (O, N, and P) presents challenges in understanding their susceptibility to antiretroviral treatments, particularly due to their natural resistance to non-nucleoside reverse transcriptase inhibitors. The TROPI-CO study logically complements our prior investigations into integrase inhibitors and anti-gp120 efficacy. The largest panel of 45 non-M strains existing so far yielded valuable results on maraviroc (MVC) susceptibility. The significant variations in MVC IC50 reveal a spectrum of susceptibilities, with most strains displaying R5 tropism. Notably, the absence of MVC-resistant strains suggests a potential therapeutic avenue. The study also employs a robust novel cell-based phenotropism assay and identifies distinct groups of susceptibilities based on inhibition curve slopes. Our findings emphasize the importance of determining tropism before initiating MVC and provide crucial insights for selecting effective therapeutic strategies in the delicate context of HIV-1 non-M infections.


Subject(s)
CCR5 Receptor Antagonists , HIV Infections , HIV-1 , Maraviroc , Viral Tropism , HIV-1/drug effects , HIV-1/genetics , HIV-1/physiology , Maraviroc/pharmacology , Humans , CCR5 Receptor Antagonists/pharmacology , HIV Infections/virology , HIV Infections/drug therapy , Inhibitory Concentration 50 , Triazoles/pharmacology , Phenotype , Microbial Sensitivity Tests , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Anti-HIV Agents/pharmacology , Cyclohexanes/pharmacology , Drug Resistance, Viral/genetics , HIV Fusion Inhibitors/pharmacology
5.
Cancer Cell ; 42(6): 1032-1050.e10, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38759656

ABSTRACT

Total tumor clearance through immunotherapy is associated with a fully coordinated innate and adaptive immune response, but knowledge on the exact contribution of each immune cell subset is limited. We show that therapy-induced intratumoral CD8+ T cells recruited and skewed late-stage activated M1-like macrophages, which were critical for effective tumor control in two different murine models of cancer immunotherapy. The activated CD8+ T cells summon these macrophages into the tumor and their close vicinity via CCR5 signaling. Exposure of non-polarized macrophages to activated T cell supernatant and tumor lysate recapitulates the late-stage activated and tumoricidal phenotype in vitro. The transcriptomic signature of these macrophages is also detected in a similar macrophage population present in human tumors and coincides with clinical response to immune checkpoint inhibitors. The requirement of a functional co-operation between CD8+ T cells and effector macrophages for effective immunotherapy gives warning to combinations with broad macrophage-targeting strategies.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Macrophages , Animals , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Mice , Humans , Macrophages/immunology , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Mice, Inbred C57BL , Macrophage Activation/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocyte Activation/immunology , Female , Tumor Microenvironment/immunology
6.
Int Immunopharmacol ; 135: 112331, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38795597

ABSTRACT

CCR5 may be involved in the pathogenesis of asthma; however, the underlying mechanisms remain unclear. In comparison with a mild asthma model, subepithelial fibrosis was more severe and CCR5 gene expression in the lungs was significantly higher in our recently developed murine model of steroid-resistant severe asthma. Treatment with the CCR5 antagonist, maraviroc, significantly suppressed the development of subepithelial fibrosis in bronchi, whereas dexamethasone did not. On the other hand, increases in leukocytes related to type 2 inflammation, eosinophils, Th2 cells, and group 2 innate lymphoid cells in the lungs were not affected by the treatment with maraviroc. Increases in neutrophils and total macrophages were also not affected by the CCR5 antagonist. However, increases in transforming growth factor (TGF)-ß-producing interstitial macrophages (IMs) were significantly reduced by maraviroc. The present results confirmed increases in CCR5-expressing IMs in the lungs of the severe asthma model. In conclusion, CCR5 on IMs plays significant roles in the development of subepithelial fibrosis in severe asthma through TGF-ß production in the lungs.


Subject(s)
Asthma , CCR5 Receptor Antagonists , Macrophages , Maraviroc , Pulmonary Fibrosis , Receptors, CCR5 , Transforming Growth Factor beta , Animals , Asthma/immunology , Asthma/drug therapy , Asthma/pathology , Asthma/metabolism , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Maraviroc/pharmacology , Maraviroc/therapeutic use , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Macrophages/immunology , Macrophages/drug effects , Transforming Growth Factor beta/metabolism , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Mice , Lung/pathology , Lung/immunology , Lung/drug effects , Mice, Inbred BALB C , Disease Models, Animal , Humans , Female
7.
J Immunother Cancer ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38719543

ABSTRACT

The CCR/L5 axis is known for its role in immune regulation in a variety of settings and has been shown to have dichotomous functions in cancer, influencing both tumor progression and immune responses. Battaglin et al investigated its role using genomic and transcriptomic data from several datasets of patients with advanced colorectal cancer (CRC), including patients treated on CALGB/SWOG 80405, a trial of chemotherapy plus cetuximab versus bevacizumab, as well as a larger population of patients whose CRCs underwent commercially available Caris NGS and CODEai assays. These authors showed that CCR/L5 expression was both prognostic and predictive. They reported that low expression of the CCR/L5 axis was correlated with improved survival broadly, with particular benefit in patients treated with chemotherapy plus cetuximab. They demonstrated that high expression of CCR/L5 was associated with infiltration by negatively prognostic Tregs, M1 and M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. They also showed that increased expression was correlated a wide variety of immune suppressive proteins, including PD-1, PD-L1, PD-L2, CTLA4, CD80, CD86, TIM3, IDO1, LAG3, and IFN-γ. This suggests mechanisms by which CRC resists anti-cancer immune responses. This study enhances our understanding of the role of the CCR/L5 axis in advanced CRC.


Subject(s)
Chemokine CCL5 , Colorectal Neoplasms , Receptors, CCR5 , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Neoplasm Metastasis
8.
Sci Rep ; 14(1): 10852, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38741006

ABSTRACT

Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , HIV Fusion Inhibitors , HIV Infections , HIV-1 , Receptors, CCR5 , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Gene Editing/methods , Humans , HIV-1/genetics , HIV-1/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV Infections/therapy , HIV Fusion Inhibitors/pharmacology , Cell Line , Virus Replication/drug effects , Recombinant Fusion Proteins
9.
J Neuroinflammation ; 21(1): 136, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802924

ABSTRACT

Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.


Subject(s)
Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CCR5 , Single-Cell Analysis , Uveitis , Animals , Mice , Mesenchymal Stem Cells/metabolism , Uveitis/immunology , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Autoimmune Diseases/therapy , Gene Expression Profiling , Disease Models, Animal , Female , Single-Cell Gene Expression Analysis
11.
Cell Stem Cell ; 31(4): 499-518.e6, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579682

ABSTRACT

Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.


Subject(s)
Gene Editing , HIV Infections , HIV-1 , Humans , Gene Editing/methods , Hematopoietic Stem Cells , HIV Infections/genetics , HIV Infections/therapy , HIV-1/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics
12.
Eur Rev Med Pharmacol Sci ; 28(6): 2430-2463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38567606

ABSTRACT

Human Immunodeficiency Virus (HIV) has continuously been the greatest epidemic for humanity over a period spanning almost five decades. With no specific cure or treatment available to date despite extensive research, the C-C Chemokine Receptor 5, Delta 32 (CCR5 Δ32) allele genetic point mutation plays an imperative role in the prevention of acquired immunodeficiency syndrome (AIDS). This comprehensive study aims to review the induction of the homozygous recessive deletion genotype using the Clustered Regularly Interspaced Short Palindromic Repeats, Cas 9 Enzyme (CRISPR-Cas9), and hematopoietic stem cell transplantation under positive selection pressure for active immunity in seropositive patients' populations as the phenotype. A methodology is proposed to trigger a significant increase in the expression of Delta 32 beneficial mutant alleles within controlled modern healthcare facilities utilizing totipotent stem cells through somatic gene therapy. It acts upon two dysfunctional CCR5 genes, translating mutant G protein-coupled co-receptors, whose primary function is similar to that of C-X-C Motif Chemokine receptor 4 (CXCR4), by blocking the entry of viral RNA into the CD4+ T helper lymphocytes, halting infection and seizing viral life cycle. This modification is endemic in Northern Europe, where it naturally pertains to the Caucasian descent population samples in the form of polymorphism, p (X=0.01), where X is the probability of frequency of complete immunity against HIV-1 in population samples. The epigenetics of the single nucleotide polymorphism (SNP) are analyzed as they play a significant role in immunity distribution. Furthermore, a comparative analysis within the ethical boundaries of CRISPR-Cas9 is conducted to discuss the practical aspects and challenges of the presented methodologies and treatment alternatives. Additionally, the study assembles all available data and summarizes preexisting research while providing a promising solution to this ethical dilemma. Finally, a methodology is devised to answer the question of whether the variant-specific epidemic of AIDS caused by HIV-1 can be cured via artificially inducing immunity by CRISPR-Cas9.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , HIV-1 , Humans , HIV-1/genetics , Acquired Immunodeficiency Syndrome/genetics , Acquired Immunodeficiency Syndrome/therapy , HIV Infections/genetics , HIV Infections/therapy , CRISPR-Cas Systems/genetics , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Mutation , Genetic Therapy , Polymorphism, Single Nucleotide , Gene Frequency
13.
Cell Stem Cell ; 31(4): 433-434, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579679

ABSTRACT

The chemokine receptors CCR5 and CXCR4 are "front doors" for HIV-1 infection in host cells, and their targeting represents a potential solution for a cure. Dudek et al.1 now propose a new gene editing strategy to simultaneously block CCR5- and CXCR4-mediated HIV-1 entry in autologous hematopoietic stem and progenitor cells (HSPCs).


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Hematopoietic Stem Cells , Receptors, CCR5/genetics , HIV Infections/genetics , Receptors, CXCR4/genetics , Gene Editing
14.
Cell Death Dis ; 15(4): 264, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615035

ABSTRACT

Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.


Subject(s)
Cognition Disorders , Lewy Body Disease , Animals , Mice , Humans , alpha-Synuclein , Dendritic Spines , Actin Depolymerizing Factors , Receptors, CCR5/genetics
15.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675853

ABSTRACT

HIV-1 typically infects cells via the CD4 receptor and CCR5 or CXCR4 co-receptors. Maraviroc is a CCR5-specific viral entry inhibitor; knowledge of viral co-receptor specificity is important prior to usage. We developed and validated an economical V3-env Illumina-based assay to detect and quantify the frequency of viruses utilizing each co-receptor. Plasma from 54 HIV+ participants (subtype B) was tested. The viral template cDNA was generated from plasma RNA with unique molecular identifiers (UMIs). The sequences were aligned and collapsed by the UMIs with a custom bioinformatics pipeline. Co-receptor usage, determined by codon analysis and online phenotype predictors PSSM and Geno2pheno, were compared to existing Trofile® data. The cost of V3-UMI was tallied. The sequences interpreted by Geno2pheno using the most conservative cut-off, a 2% false-positive-rate (FPR), predicted CXCR4 usage with the greatest sensitivity (76%) and specificity (100%); PSSM and codon analysis had similar sensitivity and lower specificity. Discordant Trofile® and genotypic results were more common when participants had specimens from different dates analyzed by either assay. V3-UMI reagents cost USD$62/specimen. A batch of ≤20 specimens required 5 h of technical time across 1.5 days. V3-UMI predicts HIV tropism at a sensitivity and specificity similar to those of Trofile®, is relatively inexpensive, and could be performed by most central laboratories. The adoption of V3-UMI could expand HIV drug therapeutic options in lower-resource settings that currently do not have access to phenotypic HIV tropism testing.


Subject(s)
Genotyping Techniques , Receptors, CCR5 , Receptors, CXCR4 , Humans , Male , Genotype , Genotyping Techniques/methods , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , RNA, Viral/genetics , Sensitivity and Specificity , Viral Tropism
16.
Cytokine ; 178: 156579, 2024 06.
Article in English | MEDLINE | ID: mdl-38471419

ABSTRACT

The aim of this study was to evaluate the effect of non-surgical periodontal treatment in the expression of chemokine receptors, in individuals with Periodontitis, associated or not with Diabetes. Pilot study, which included patients (n = 45) with Periodontitis, associated (n = 25) or not (n = 20) with Diabetes, submitted to the non-surgical periodontal treatment for one month. The expression of chemokine receptors CCR2, CCR5, and CX3CR1 at the mRNA level was evaluated in the peripheral mononuclear cells, as well as the expression of these receptors at the protein level was verified in monocyte subtypes (classical, intermediate, and non-classical monocytes). There was higher expression of CCR2 and CCR5 receptors at the initial visit in the group with Diabetes, with no differences for CX3CR1 (p = 0.002; p = 0.018, and p = 0.896, respectively), without differences after treatment. There was higher expression of CCR2 and CCR5 proteins in the group with Diabetes at the initial visit for classical, intermediate, and nonclassical monocytes, with no differences for CX3CR1 (CCR2: p = 0.004; p = 0.026; p = 0.024; CCR5: 0.045; p = 0.045; p = 0.013; CX3CR1: p = 0.424; p = 0.944; p = 0.392, respectively), without differences after the end of treatment. Concerning each group separately, there were reductions in the expression of CCR2 as well as CCR5 in classical, intermediate, and nonclassical monocytes, and reduction of CX3CR1 in classical monocytes after treatment in the group with Diabetes (p = 0.003; p = 0.006; p = 0.039; p = 0.007; p = 0.006; p = 0.004; p = 0.019, respectively), without differences in the group without Diabetes. The expression of the chemokine receptors CCR2 and CCR5, in patients with Periodontitis associated with Diabetes, is favorably modified after the end of the non-surgical periodontal treatment.


Subject(s)
Diabetes Mellitus , Periodontitis , Humans , Monocytes/metabolism , Pilot Projects , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Diabetes Mellitus/metabolism , Periodontitis/therapy , Periodontitis/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism
17.
Aging (Albany NY) ; 16(7): 6229-6261, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38552222

ABSTRACT

This study aims to assess the prognostic value of the C-C motif chemokine receptor (CCR) gene family in hepatocellular carcinoma (HCC) and its relationship with immune infiltration and molecular subtypes of HCC. The evaluation of the GSE14520 dataset and TCGA database confirmed the prognostic significance of CCR. Building upon the correlation between CCR1, CCR5, and CCR7 and favorable prognosis, we further validated the prognostic importance of CCR1, CCR5, and CCR7 in ICGC database and an independent cohort from Guangxi autonomous region. Then, we constructed a risk prognosis model. Additionally, we observed significant positive correlations between CCR1, CCR5, and CCR7 and the infiltration of B cells, T cells, and macrophages in HCC. Subsequently, we conducted CCK assays, Transwell assays, and colony formation assays to evaluate the molecular biological functions of CCR1, CCR5, and CCR7. These experiments further confirmed that upregulation of CCR1, CCR5, and CCR7 can individually inhibit the proliferation, migration, and stemness of HCC cells. By analyzing the relationship between expression levels and tumor mutation frequency, we discovered that patients with high CCR1 expression were more likely to be classified as non-proliferative HCC. Similar conclusions were observed for CCR5 and CCR7. The association of CCR1, CCR5, and CCR7 with the molecular subtypes of HCC suggests that they may serve as intermediary molecules linking immune status and molecular subtypes in HCC. In summary, CCR1, CCR5, and CCR7 have the potential to serve as prognostic biomarkers for HCC and regulate HCC progression by influencing immune cell infiltration.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, CCR1 , Receptors, CCR5 , Receptors, CCR7 , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Receptors, CCR1/genetics , Receptors, CCR1/metabolism , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Prognosis , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Female , Gene Expression Regulation, Neoplastic , Male , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Middle Aged
18.
Proc Natl Acad Sci U S A ; 121(12): e2321907121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38457490

ABSTRACT

The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Humans , HIV Infections/genetics , HIV Infections/drug therapy , Gene Frequency , Receptors, CCR5/genetics , Acquired Immunodeficiency Syndrome/genetics , Mutation , Homozygote
19.
Sci Adv ; 10(12): eadl0368, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507500

ABSTRACT

CCR5 serves as R5-tropic HIV co-receptor. Knocking out CCR5 in HIV patients, which has occurred <10 times, is believed important for cure. JAK/STAT inhibitors tofacitinib and ruxolitinib inhibit CCR5 expression in HIV+ viremic patients. We investigated the association of JAK/STAT signaling pathway with CCR5/CCR2 expression in human primary CD4+ T cells and confirmed its importance. Six of nine JAK/STAT inhibitors that reduced CCR5/CCR2 expression were identified. Inhibitor-treated CD4+ T cells were relatively resistant, specifically to R5-tropic HIV infection. Furthermore, single JAK2, STAT3, STAT5A, and STAT5B knockout and different combinations of JAK/STAT knockout significantly reduced CCR2/CCR5 expression of both RNA and protein levels, indicating that CCR5/CCR2 expression was positively regulated by JAK-STAT pathway in CD4+ T cells. Serum and glucocorticoid-regulated kinase 1 (SGK1) knockout affected CCR2/CCR5 gene expression, suggesting that SGK1 is involved in CCR2/CCR5 regulation. If cell surface CCR5 levels can be specifically and markedly down-regulated without adverse effects, that may have a major impact on the HIV cure agenda.


Subject(s)
HIV Infections , HIV-1 , Humans , T-Lymphocytes/metabolism , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/metabolism , Janus Kinases/metabolism , HIV-1/physiology , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Signal Transduction , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/metabolism
20.
Food Chem Toxicol ; 186: 114511, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360389

ABSTRACT

This article explores the impact of environmental chemicals on CCR5 expression and related inflammatory responses based on curated data from the Comparative Toxicogenomics Database (CTD). A total of 143 CCR5-interacting chemicals was found, with 229 chemical interactions. Of note, 67 (29.3%) out of 229 interactions resulted in "increased expression" of CCR5 mRNA or CCR5 protein, and 42 (18.3%) chemical interactions resulted in "decreased expression". The top-5 CCR5-interacting chemicals were "Tetrachlorodibenzodioxin", "Lipopolysaccharides", "Benzo(a)pyrene", "Drugs, Chinese Herbal", and "Ethinyl Estradiol". Based on the number of interactions and importance as environmental contaminant, we then focused our analysis on Tetrachlorodibenzodioxin and Benzo(a)pyrene. There is some consistency in the data supporting an increase in CCR5 expression triggered by Tetrachlorodibenzodioxin; although data concerning CCR5-Benzo(a)pyrene interactions is limited. Considering the high linkage disequilibrium between CCR5 and CCR2 genes, we also search for chemicals that interact with both genes, which resulted in 72 interacting chemicals, representing 50.3% of the 143 CCR5-interacting chemicals and 37.5% of the 192 CCR2-interacting chemicals. In conclusion, CTD data showed that environmental contaminants indeed affect CCR5 expression, with a tendency towards increased expression. The interaction of environmental contaminants with other chemokine receptor genes may potentialize their toxic effects on the chemokine system, favoring inflammation.


Subject(s)
Polychlorinated Dibenzodioxins , Toxicogenetics , Humans , Benzo(a)pyrene/toxicity , Inflammation/chemically induced , Inflammation/genetics , Chemokines , Receptors, CCR5/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...