Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.292
Filter
1.
Hum Vaccin Immunother ; 20(1): 2368288, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38953250

ABSTRACT

Many pathogens enter the host through mucosal sites. Thus, interfering with pathogen entry through local neutralization at mucosal sites therefore is an effective strategy for preventing disease. Mucosally administered vaccines have the potential to induce protective immune responses at mucosal sites. This manuscript delves into some of the latest developments in mucosal vaccination, particularly focusing on advancements in adjuvant technologies and the role of these adjuvants in enhancing vaccine efficacy against respiratory pathogens. It highlights the anatomical and immunological complexities of the respiratory mucosal immune system, emphasizing the significance of mucosal secretory IgA and tissue-resident memory T cells in local immune responses. We further discuss the differences between immune responses induced through traditional parenteral vaccination approaches vs. mucosal administration strategies, and explore the protective advantages offered by immunization through mucosal routes.


Subject(s)
Immunity, Mucosal , Respiratory Mucosa , Humans , Respiratory Mucosa/immunology , Animals , Vaccines/immunology , Vaccines/administration & dosage , Administration, Mucosal , Adjuvants, Vaccine , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Memory T Cells/immunology , Immunoglobulin A, Secretory/immunology
2.
Front Immunol ; 15: 1346491, 2024.
Article in English | MEDLINE | ID: mdl-38911863

ABSTRACT

Introduction: Exacerbations of chronic obstructive pulmonary disease (COPD) increase mortality risk and can lead to accelerated loss of lung function. The increased inflammatory response during exacerbations contributes to worsening of airflow limitation, but whether it also impacts epithelial repair is unclear. Therefore, we studied the effect of the soluble factor micro-environment during COPD exacerbations on epithelial repair using an exacerbation cocktail (EC), composed of four factors that are increased in COPD lungs during exacerbations (IL-1ß, IL-6, IL-8, TNF-α). Methods: Mouse organoids (primary CD31-CD45-Epcam+ cells co-cultured with CCL206 fibroblasts) were used to study epithelial progenitor behavior. Mature epithelial cell responses were evaluated using mouse precision cut lung slices (PCLS). The expression of epithelial supportive factors was assessed in CCL206 fibroblasts and primary human lung fibroblasts. Results: EC exposure increased the number and size of organoids formed, and upregulated Lamp3, Muc5ac and Muc5b expression in day 14 organoids. In PCLS, EC imparted no effect on epithelial marker expression. Pre-treatment of CCL206 fibroblasts with EC was sufficient to increase organoid formation. Additionally, the expression of Il33, Tgfa and Areg was increased in CCL206 fibroblasts from EC treated organoids, but these factors individually did not affect organoid formation or size. However, TGF-α downregulated Foxj1 expression and upregulated Aqp5 expression in day 14 organoids. Conclusions: EC exposure stimulates organoid formation and growth, but it alters epithelial differentiation. EC changes the epithelial progenitor support function of fibroblasts which contributes to observed effects on epithelial progenitors.


Subject(s)
Epithelial Cells , Fibroblasts , Organoids , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/immunology , Humans , Mice , Fibroblasts/metabolism , Epithelial Cells/metabolism , Cytokines/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Cells, Cultured , Disease Progression , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Mice, Inbred C57BL
3.
Respir Res ; 25(1): 240, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867225

ABSTRACT

BACKGROUND: Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) suffer from a high burden of pulmonary diseases, even after accounting for their smoking status. Cytotoxic CD8 T-cells are likely implicated in this phenomenon and may act as a double-edged sword. While being essential in viral infection control, their hyperactivation can also contribute to lung mucosal tissue damage. The effects of HIV and smoking on pulmonary mucosal CD8 T-cell dynamics has been a neglected area of research, which we address herein. METHODS: Bronchoalveolar lavage (BAL) fluid were obtained from ART-treated PLWH (median duration of supressed viral load: 9 years; smokers: n = 14; non-smokers: n = 21) and HIV-uninfected controls (smokers: n = 11; non-smokers: n = 20) without any respiratory symptoms or active infection. Lymphocytes were isolated and CD8 T-cell subsets and homing markers were characterized by multiparametric flow cytometry. RESULTS: Both smoking and HIV infection were independently associated with a significant increase in frequencies of total pulmonary mucosal CD8 T-cell. BAL CD8 T-cells were primarily CD69 + expressing CD103 and/or CD49a, at least one of the two granzymes (GzmA/GzmB), and little Perforin. Higher expression levels of CD103, CD69, and GzmB were observed in smokers versus non-smokers. The ex vivo phenotype of GzmA + and GzmB + cells revealed increased expression of CD103 and CXCR6 in smokers, while PLWH displayed elevated levels of CX3CR1 compared to controls. CONCLUSION: Smoking and HIV could promote cytotoxic CD8 T-cell retention in small airways through different mechanisms. Smoking likely increases recruitment and retention of GzmB + CD8 Trm via CXCR6 and CD103. Heightened CX3CR1 expression could be associated with CD8 non-Trm recruitment from the periphery in PLWH.


Subject(s)
HIV Infections , Humans , Male , HIV Infections/drug therapy , HIV Infections/immunology , Female , Middle Aged , Adult , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/metabolism , Smoking/adverse effects , Bronchoalveolar Lavage Fluid/immunology , Anti-Retroviral Agents/therapeutic use , Anti-HIV Agents/therapeutic use , Lung/immunology , Lung/drug effects , Lung/metabolism
4.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932231

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) replicates in the upper respiratory tract and tonsils of pigs. Using an air-liquid interface porcine respiratory epithelial cells (ALI-PRECs) culture system, we demonstrated that PHEV disrupts respiratory epithelia homeostasis by impairing ciliary function and inducing antiviral, pro-inflammatory cytokine, and chemokine responses. This study explores the mechanisms driving early innate immune responses during PHEV infection through host transcriptome analysis. Total RNA was collected from ALI-PRECs at 24, 36, and 48 h post inoculation (hpi). RNA-seq analysis was performed using an Illumina Hiseq 600 to generate 100 bp paired-end reads. Differential gene expression was analyzed using DeSeq2. PHEV replicated actively in ALI-PRECs, causing cytopathic changes and progressive mucociliary disruption. Transcriptome analysis revealed downregulation of cilia-associated genes such as CILK1, DNAH11, LRRC-23, -49, and -51, and acidic sialomucin CD164L2. PHEV also activated antiviral signaling pathways, significantly increasing the expression of interferon-stimulated genes (RSAD2, MX1, IFIT, and ISG15) and chemokine genes (CCL5 and CXCL10), highlighting inflammatory regulation. This study contributes to elucidating the molecular mechanisms of the innate immune response to PHEV infection of the airway epithelium, emphasizing the critical roles of the mucociliary, interferon, and chemokine responses.


Subject(s)
Betacoronavirus 1 , Epithelial Cells , Gene Expression Profiling , Interferons , Animals , Swine , Epithelial Cells/virology , Epithelial Cells/immunology , Interferons/genetics , Interferons/metabolism , Interferons/immunology , Betacoronavirus 1/immunology , Betacoronavirus 1/genetics , Immunity, Innate , Virus Replication , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Cytokines/metabolism , Cytokines/genetics , Cytokines/immunology , Transcriptome , Respiratory Mucosa/virology , Respiratory Mucosa/immunology , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/genetics , Cells, Cultured , Deltacoronavirus
5.
Hum Cell ; 37(4): 1080-1090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38814518

ABSTRACT

Airway epithelium represents a physical barrier against toxic substances and pathogens but also presents pattern recognition receptors on the epithelial cells that detect pathogens leading to molecule release and sending signals that activate both the innate and adaptive immune responses. Thus, impaired airway epithelial function and poor integrity may increase the recurrence of infections. Probiotic use in respiratory diseases as adjuvant of traditional therapy is increasingly widespread. There is growing interest in the use of non-viable heat-killed bacteria, such as tyndallized bacteria (TB), due to safety concerns and to their immunomodulatory properties. This study explores in vitro the effects of a TB blend on the immune activation of airway epithelium. 16HBE bronchial epithelial cells were exposed to different concentrations of TB. Cell viability, TB internalization, TLR2 expression, IL-6, IL-8 and TGF-ßl expression/release, E-cadherin expression and wound healing were assessed. We found that TB were tolerated, internalized, increased TLR2, E-cadherin expression, IL-6 release and wound healing but decreased both IL-8 and TGF-ßl release. In conclusion, TB activate TLR2 pathway without inducing a relevant pro-inflammatory response and improve barrier function, leading to the concept that TB preserve epithelial homeostasis and could be used as strategy to prevent and to manage respiratory infection, exacerbations included.


Subject(s)
Bronchi , Epithelial Cells , Immunity, Innate , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Bronchi/cytology , Bronchi/immunology , Interleukin-6/metabolism , Probiotics , Respiratory Mucosa/immunology , Cadherins/metabolism , Gene Expression , Cells, Cultured , Interleukin-8/metabolism , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Cell Survival
6.
Front Immunol ; 15: 1362404, 2024.
Article in English | MEDLINE | ID: mdl-38745671

ABSTRACT

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Subject(s)
Asthma , Epithelial Cells , Matrix Metalloproteinase 9 , Oxidative Stress , Plant Extracts , Animals , Female , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Matrix Metalloproteinase 9/metabolism , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , Ovalbumin/immunology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Signal Transduction/drug effects
7.
Allergol Int ; 73(3): 375-381, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692992

ABSTRACT

Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.


Subject(s)
Asthma , Mucus , Humans , Asthma/metabolism , Asthma/drug therapy , Mucus/metabolism , Animals , Molecular Targeted Therapy , Mucins/metabolism , Mucin 5AC/metabolism , Mucin-5B/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology
8.
Front Cell Infect Microbiol ; 14: 1346087, 2024.
Article in English | MEDLINE | ID: mdl-38736751

ABSTRACT

Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.


Subject(s)
Homeostasis , Immunity, Innate , Intestinal Mucosa , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Respiratory Mucosa/microbiology , Respiratory Mucosa/immunology , Epithelial Cells/microbiology , Signal Transduction , Adaptive Immunity , Macrophages/immunology , Macrophages/microbiology , Host-Pathogen Interactions
9.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652717

ABSTRACT

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Subject(s)
Cystic Fibrosis , Cytokines , Epithelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/virology , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Cytokines/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Phage Therapy , Bacteriophages/physiology , Bacteriophages/genetics , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Pseudomonas Infections/therapy , Pseudomonas Infections/immunology , Pseudomonas Phages/metabolism , Biofilms
10.
Laryngoscope ; 134(7): 3245-3252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38450771

ABSTRACT

OBJECTIVES: Recent immunologic study of the adaptive immune repertoire in the subglottic airway demonstrated high-frequency T cell clones that do not overlap between individuals. However, the anatomic distribution and antigenic target of the T cell repertoire in the proximal airway mucosa remain unresolved. METHODS: Single-cell RNA sequencing of matched scar and unaffected mucosa from idiopathic subglottic stenosis patients (iSGS, n = 32) was performed and compared with airway mucosa from healthy controls (n = 10). T cell receptor (TCR) sequences were interrogated via similarity network analysis to explore antigenic targets using the published algorithm: Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH2). RESULTS: The mucosal T cell repertoire in healthy control airways consisted of highly expressed T cell clones conserved across anatomic subsites (trachea, bronchi, bronchioles, and lung). In iSGS, high-frequency clones were equally represented in both scar and adjacent non-scar tissue. Significant differences in repertoire structure between iSGS scar and unaffected mucosa was observed, driven by unique low-frequency clones. GLIPH2 results suggest low-frequency clones share targets between multiple iSGS patients. CONCLUSION: Healthy airway mucosa has a highly conserved T cell repertoire across multiple anatomic subsites. Similarly, iSGS patients have highly expressed T cell clones present in both scar and unaffected mucosa. iSGS airway scar possesses an abundance of less highly expanded clones with predicted antigen targets shared between patients. Interrogation of these shared motifs suggests abundant adaptive immunity to viral targets in iSGS airway scar. These results provide insight into disease pathogenesis and illuminate new treatment strategies in iSGS. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3245-3252, 2024.


Subject(s)
Adaptive Immunity , Laryngostenosis , Humans , Adaptive Immunity/immunology , Male , Female , Laryngostenosis/immunology , Middle Aged , T-Lymphocytes/immunology , Adult , Case-Control Studies , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Respiratory Mucosa/immunology , Aged , Single-Cell Analysis
11.
J Innate Immun ; 16(1): 203-215, 2024.
Article in English | MEDLINE | ID: mdl-38471488

ABSTRACT

INTRODUCTION: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood. Here, we examined the effect of LL-37 on TNFα-mediated responses in human bronchial epithelial cells (HBECs). METHODS: We used a slow off-rate modified aptamer-based proteomics approach to define the HBEC proteome altered in response to TNFα. Abundance of selected protein candidates and signaling intermediates was examined using immunoassays, ELISA and Western blots, and mRNA abundance was examined by qRT-PCR. RESULTS: Proteomics analysis revealed that 124 proteins were significantly altered, 12 proteins were enhanced by ≥2-fold compared to unstimulated cells, in response to TNFα. MMP9 was the topmost increased protein in response to TNFα, enhanced by ∼10-fold, and MMP13 was increased by ∼3-fold, compared to unstimulated cells. Furthermore, we demonstrated that LL-37 significantly suppressed TNFα-mediated MMP9 and MMP13 in HBEC. Mechanistic data revealed that TNFα-mediated MMP9 and MMP13 production is controlled by SRC kinase and that LL-37 enhances related upstream negative regulators, namely, phospho-AKT (T308) and TNFα-mediated TNFAIP3 or A20. CONCLUSIONS: The findings of this study suggest that LL-37 may play a role in intervening in the process of airway remodeling in chronic inflammatory respiratory disease such as asthma.


Subject(s)
Airway Remodeling , Antimicrobial Cationic Peptides , Asthma , Bronchi , Cathelicidins , Epithelial Cells , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 9 , Tumor Necrosis Factor-alpha , Humans , Antimicrobial Cationic Peptides/metabolism , Asthma/immunology , Asthma/metabolism , Cells, Cultured , Epithelial Cells/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Proteomics , Respiratory Mucosa/immunology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
12.
Semin Immunopathol ; 45(4-6): 533-547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38451292

ABSTRACT

The lungs serve as the primary organ for respiration, facilitating the vital exchange of gases with the bloodstream. Given their perpetual exposure to external particulates and pathogens, they possess intricate protective barriers. Cellular adhesion in the lungs is robustly maintained through tight junctions, adherens junctions, and desmosomes. Furthermore, the pulmonary system features a mucociliary clearance mechanism that synthesizes mucus and transports it to the outside. This mucus is enriched with chemical barriers like antimicrobial proteins and immunoglobulin A (IgA). Additionally, a complex immunological network comprising epithelial cells, neural cells, and immune cells plays a pivotal role in pulmonary defense. A comprehensive understanding of these protective systems offers valuable insights into potential pathologies and their therapeutic interventions.


Subject(s)
Lung , Humans , Lung/immunology , Lung/metabolism , Animals , Mucociliary Clearance , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Tight Junctions/metabolism , Cell Adhesion , Mucus/metabolism , Mucus/immunology
13.
J Allergy Clin Immunol ; 153(5): 1181-1193, 2024 May.
Article in English | MEDLINE | ID: mdl-38395082

ABSTRACT

Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.


Subject(s)
Asthma , Respiratory Mucosa , Humans , Asthma/immunology , Asthma/physiopathology , Animals , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Cytokines/metabolism , Cytokines/immunology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/physiopathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Mast Cells/immunology , Bronchoconstriction
14.
Immunology ; 172(3): 329-342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38354831

ABSTRACT

Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.


Subject(s)
Carbocysteine , Oxidative Stress , Respiratory Mucosa , Respiratory Tract Infections , Virus Diseases , Humans , Carbocysteine/therapeutic use , Carbocysteine/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Oxidative Stress/drug effects , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/drug effects , Virus Diseases/immunology , Virus Diseases/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy
16.
J Allergy Clin Immunol ; 153(5): 1215-1228, 2024 May.
Article in English | MEDLINE | ID: mdl-38341182

ABSTRACT

This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.


Subject(s)
Asthma , Humans , Asthma/immunology , Asthma/genetics , Animals , Microbiota/immunology , Epigenesis, Genetic , Respiratory Mucosa/immunology , Biomarkers , Immunity, Mucosal
17.
Mucosal Immunol ; 17(3): 461-475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38184074

ABSTRACT

Tuberculosis is the leading cause of death for people living with HIV (PLWH). We hypothesized that altered functions of innate immune components in the human alveolar lining fluid of PLWH (HIV-ALF) drive susceptibility to Mycobacterium tuberculosis (M.tb) infection. Our results indicate a significant increase in oxidation of innate proteins and chemokine levels and significantly lower levels and function of complement components and Th1/Th2/Th17 cytokines in HIV-ALF versus control-ALF (non-HIV-infected people). We further found a deficiency of surfactant protein D (SP-D) and reduced binding of SP-D to M.tb that had been exposed to HIV-ALF. Primary human macrophages infected with M.tb exposed to HIV-ALF were significantly less capable of controlling the infection, which was reversed by SP-D replenishment in HIV-ALF. Thus, based on the limited number of participants in this study, our data suggest that PLWH without antiretroviral therapy (ART) have declining host innate defense function in their lung mucosa, thereby favoring M.tb and potentially other pulmonary infections.


Subject(s)
Cytokines , HIV Infections , Immunity, Innate , Mycobacterium tuberculosis , Pulmonary Surfactant-Associated Protein D , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Pulmonary Surfactant-Associated Protein D/metabolism , Pulmonary Surfactant-Associated Protein D/immunology , HIV Infections/immunology , Cytokines/metabolism , Male , Female , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Cells, Cultured , Adult , Tuberculosis, Pulmonary/immunology , Tuberculosis/immunology , Middle Aged , Host-Pathogen Interactions/immunology , Macrophages/immunology , Macrophages/metabolism , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism
18.
J Allergy Clin Immunol ; 153(6): 1681-1691.e12, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38142822

ABSTRACT

BACKGROUND: The upper respiratory tract is continuously exposed to microorganisms and noxious elements, leading to local immune responses and the secretion of immune markers. While several studies describe immune marker profiles in respiratory mucosal samples in defined patient cohorts, mucosal immune profiles from the general population during the different seasons are lacking. Such baseline profiles are essential to understand the effect of various exposures to the mucosal immune system throughout life. OBJECTIVE: We sought to establish baseline local upper respiratory mucosal immune profiles in the general population and assess these profiles with regard to age, sex, seasonality, and basic health and lifestyle factors. METHODS: We measured the concentrations of 35 immune markers involved in a broad range of immunological processes at the mucosa in nasopharyngeal swab samples from 951 individuals, aged 0 to 86 years, from a nationwide study. RESULTS: Clustering analysis showed that immune marker profiles clearly reflected immunological functions, such as tissue regeneration and antiviral responses. Immune marker concentrations changed strongly with seasonality and age, with the most profound changes occurring in the first 25 years of life; they were also associated with sex, body mass index, smoking, mild symptoms of airway infection, and chronic asthma and hay fever. CONCLUSION: Immunological analyses of noninvasive mucosal samples provide insight into mucosal immune responses to microbial and noxious element exposure in the general population. These data provide a baseline for future studies on respiratory mucosal immune responses and for the development of mucosal immune-based diagnostics.


Subject(s)
Biomarkers , Respiratory Mucosa , Seasons , Humans , Adult , Adolescent , Aged , Male , Female , Child , Middle Aged , Child, Preschool , Infant , Aged, 80 and over , Respiratory Mucosa/immunology , Age Factors , Young Adult , Infant, Newborn , Immunity, Mucosal
19.
J Virol ; 97(2): e0147822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656015

ABSTRACT

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Subject(s)
COVID-19 , Gene Expression , Respiratory Mucosa , SARS-CoV-2 , Viral Load , Adult , Humans , Chemokines/physiology , COVID-19/immunology , COVID-19/virology , Gene Expression/immunology , Immunity, Mucosal/immunology , Interferons/physiology , SARS-CoV-2/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/virology
20.
Allergol. immunopatol ; 51(1): 116-125, ene. 2023. ilus, graf
Article in English | IBECS | ID: ibc-214027

ABSTRACT

Background: Asthma is a chronic inflammatory airway disease that causes damage to and exfoliation of the airway epithelium. The continuous damage to the airway epithelium in asthma cannot be repaired quickly and generates irreversible damage, repeated attacks, and aggravation. Vitamin A (VA) has multifarious biological functions that include maintaining membrane stability and integrity of the structure and function of epithelial cells. Our research explored the role of VA in repairing the airway epithelium and provided a novel treatment strategy for asthma. Methods: A mouse asthma model was established by house dust mite (HDM) and treated with VA by gavage. Human bronchial epithelial (16HBE) cells were treated with HDM and all-trans retinoic acid (ATRA) in vitro. We analyzed the mRNA and protein expression of characteristic markers, such as acetyl-α-tubulin (Ac-TUB) and FOXJ1 in ciliated cells and MUC5AC in secretory cells, mucus secretion, airway inflammation, the morphology of cilia, and the integrity of the airway epithelium. Results: Findings showed destruction of airway epithelial integrity, damaged cilia, high mucus secretion, increased MUC5AC expression, and decreased Ac-TUB and FOXJ1 expression in asthmatic mice. The VA intervention reversed the effect on Ac-TUB and FOXJ1 and promoted ciliated cells to repair the damage and maintain airway epithelial integrity. In 16HBE cells, we could confirm that ATRA promoted the expression of Ac-TUB and FOXJ1. Conclusion: These results demonstrated that VA-regulated ciliated cells to repair the damaged airway epithelium caused by asthma and maintain airway epithelial integrity. VA intervention is a potential adjunct to conventional treatment for asthma (AU)


Subject(s)
Animals , Female , Mice , Asthma/drug therapy , Respiratory Mucosa/immunology , Vitamin A/administration & dosage , Glucocorticoids/administration & dosage , Disease Models, Animal , Respiratory Mucosa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...