Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.245
Filter
1.
Sci Data ; 11(1): 832, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090119

ABSTRACT

Fractional tree cover facilitates the depiction of forest density and its changes. However, it remains challenging to estimate tree cover from satellite data, leading to substantial uncertainties in forest cover changes analysis. This paper generated a global annual fractional tree cover dataset from 2000 to 2021 with 250 m resolution (GLOBMAP FTC). MODIS annual observations were realigned at the pixel level to a common phenology and used to extract twelve features that can differentiate between trees and herbaceous vegetation, which greatly reduced feature dimensionality. A massive training data, consisting of 465.88 million sample points from four high-resolution global forest cover products, was collected to train a feedforward neural network model to predict tree cover. Compared with the validation datasets derived from the USGS circa 2010 global land cover reference dataset, the R2 value, MAE, and RMSE were 0.73, 10.55%, and 17.98%, respectively. This dataset can be applied for assessment of forest cover changes, including both abrupt forest loss and gradual forest gain.


Subject(s)
Forests , Seasons , Trees , Neural Networks, Computer , Satellite Imagery
2.
Environ Sci Technol ; 58(32): 14260-14270, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39096297

ABSTRACT

Fine-mode aerosol optical depth (fAOD) is a vital proxy for the concentration of anthropogenic aerosols in the atmosphere. Currently, the limited data length and high uncertainty of the satellite-based data diminish the applicability of fAOD for climate research. Here, we propose a novel pretrained deep learning framework that can extract information underlying each satellite pixel and use it to create new latent features that can be employed for improving retrieval accuracy in regions without in situ data. With the proposed model, we developed a new global fAOD (at 0.5 µm) data from 2001 to 2020, resulting in a 10% improvement in the overall correlation coefficient (R) during site-based independent validation and a 15% enhancement in non-AERONET site areas validation. Over the past two decades, there has been a noticeable downward trend in global fAOD (-1.39 × 10-3/year). Compared to the general deep-learning model, our method reduces the global trend's previously overestimated magnitude by 7% per year. China has experienced the most significant decline (-5.07 × 10-3/year), which is 3 times greater than the global trend. Conversely, India has shown a significant increase (7.86 × 10-4/year). This study bridges the gap between sparse in situ observations and abundant satellite measurements, thereby improving predictive models for global patterns of fAOD and other climate factors.


Subject(s)
Aerosols , Deep Learning , Atmosphere/chemistry , Environmental Monitoring/methods , Satellite Imagery
3.
Sci Rep ; 14(1): 18227, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107395

ABSTRACT

Identification of Aedes aegypti breeding hotspots is essential for the implementation of targeted vector control strategies and thus the prevention of several mosquito-borne diseases worldwide. Training computer vision models on satellite and street view imagery in the municipality of Rio de Janeiro, we analyzed the correlation between the density of common breeding grounds and Aedes aegypti infestation measured by ovitraps on a monthly basis between 2019 and 2022. Our findings emphasized the significance (p ≤ 0.05) of micro-habitat proxies generated through object detection, allowing to explain high spatial variance in urban abundance of Aedes aegypti immatures. Water tanks, non-mounted car tires, plastic bags, potted plants, and storm drains positively correlated with Aedes aegypti egg and larva counts considering a 1000 m mosquito flight range buffer around 2700 ovitrap locations, while dumpsters, small trash bins, and large trash bins exhibited a negative association. This complementary application of satellite and street view imagery opens the pathway for high-resolution interpolation of entomological surveillance data and has the potential to optimize vector control strategies. Consequently it supports the mitigation of emerging infectious diseases transmitted by Aedes aegypti, such as dengue, chikungunya, and Zika, which cause thousands of deaths each year.


Subject(s)
Aedes , Mosquito Vectors , Animals , Aedes/physiology , Mosquito Vectors/physiology , Brazil , Satellite Imagery/methods , Cities , Mosquito Control/methods , Breeding , Ecosystem , Larva/physiology
4.
Sci Rep ; 14(1): 18559, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122760

ABSTRACT

The quantitative extraction and evolution stage identification of the Nitraria tangutorum nebkhas are the basis for the restoration of regional plants and the reconstruction of degraded ecosystems. In this paper, the Nitraria tangutorum nebkha in Dengkou County of China was taken as the research object. Through the spectral and texture information of Gaofen-2 satellite image, the quantitative extraction of Nitraria tangutorum nebkha area and coverage information was completed using methods of gray threshold method, mathematical morphology, FCLSU mixed pixel decomposition, kernel density spatial analysis; the current evolution stage of the Nitraria tangutorum nebkha was identified, and their spatial distribution characteristics were analyzed. The results showed that: (1) The user accuracy and mapping accuracy of Nitraria tangutorum nebkha extracted from Random Forest combined with object-oriented classification method were up to 90.32%. (2) The method proposed can achieve an accuracy of 93.76% in extracting the spatial position of Nitraria tangutorum nebkhas. (3) The evolution of Nitraria tangutorum nebkhas can be divided into three stages: embryonic or developmental stage, stable stage, and declining stage, with a proportion of 60.70%, 20.97%, and 18.33%, respectively; The Nitraria tangutorum nebkhas in the study area is mainly in their embryonic or developmental stage, and the proportion of Nitraria tangutorum nebkhas in the declining stage is also large. It can provide technical and theoretical support for the precise extraction of nebkhas in arid and semi-arid desert areas, the identification of their current evolutionary stages, and the study of their spatial distribution patterns.


Subject(s)
Satellite Imagery , China , Spatial Analysis , Ecosystem
5.
Int J Health Geogr ; 23(1): 18, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972982

ABSTRACT

BACKGROUND: The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. METHODS: We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. RESULTS: Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. CONCLUSION: This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.


Subject(s)
Aedes , Cities , Satellite Imagery , Animals , Satellite Imagery/methods , Mosquito Vectors , French Guiana/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue/prevention & control , Humans , Breeding/methods
6.
PLoS One ; 19(7): e0307187, 2024.
Article in English | MEDLINE | ID: mdl-39024353

ABSTRACT

In the urban scene segmentation, the "image-to-image translation issue" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different classes. When this translation process is inaccurate or incomplete, it can lead to failed segmentation results where the model struggles to correctly classify pixels into the appropriate semantic categories. The study proposed a conditional Generative Adversarial Network (cGAN), for creating high-resolution urban maps from satellite images. The method combines semantic and spatial data using cGAN framework to produce realistic urban scenes while maintaining crucial details. To assess the performance of the proposed method, extensive experiments are performed on benchmark datasets, the ISPRS Potsdam and Vaihingen datasets. Intersection over Union (IoU) and Pixel Accuracy are two quantitative metrics used to evaluate the segmentation accuracy of the produced maps. The proposed method outperforms traditional methods with an IoU of 87% and a Pixel Accuracy of 93%. The experimental findings show that the suggested cGAN-based method performs better than traditional techniques, attaining better segmentation accuracy and generating better urban maps with finely detailed information. The suggested approach provides a framework for resolving the image-to-image translation difficulties in urban scene segmentation, demonstrating the potential of cGANs for producing excellent urban maps from satellite data.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Satellite Imagery , Satellite Imagery/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Humans , Algorithms
7.
PeerJ ; 12: e17714, 2024.
Article in English | MEDLINE | ID: mdl-39035152

ABSTRACT

Protected areas in South Asia face significant challenges due to human disturbance and deforestation. The ongoing debate surrounds the recent surge in illegal encroachment of forest buffer zones in the Musali divisional secretariat division (DSD), which has led to a significant loss of forest cover over the past three decades. In this context, detecting changes in forest cover, assessing forest health, and evaluating environmental quality are crucial for sustainable forest management. As such, our efforts focused on assessing forest cover dynamics, forest health, and environmental conditions in the DSD from 1988 to 2022. We employed standardized image processing techniques, utilizing Landsat-5 (TM) and Landsat-8 (OLI) images. However, the forest area in the DSD has shown minimal changes, and environmental conditions and forest health have illustrated considerable spatial-temporal variations over the 34 years. The results indicated that 8.5 km2 (1.9%) of forest cover in the DSD has been converted to other land use classes. Overall, the Normalized Difference Vegetation Index (NDVI) has declined over time, while Land Surface Temperature (LST) exhibits an increasing trend. The regression results demonstrated a robust inverse relationship between LST and NDVI. The declining vegetation conditions and the increasing LST contribute to an increase in environmental criticality. The derived maps and indices will be beneficial for forest authorities in identifying highly sensitive locations. Additionally, they could enable land use planners to develop sustainable land management strategies.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring , Forests , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Humans , Satellite Imagery
8.
Glob Chang Biol ; 30(7): e17441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054867

ABSTRACT

Vegetation growth is affected by past growth rates and climate variability. However, the impacts of vegetation growth carryover (VGC; biotic) and lagged climatic effects (LCE; abiotic) on tree stem radial growth may be decoupled from photosynthetic capacity, as higher photosynthesis does not always translate into greater growth. To assess the interaction of tree-species level VGC and LCE with ecosystem-scale photosynthetic processes, we utilized tree-ring width (TRW) data for three tree species: Castanopsis eyrei (CE), Castanea henryi (CH, Chinese chinquapin), and Liquidambar formosana (LF, Chinese sweet gum), along with satellite-based data on canopy greenness (EVI, enhanced vegetation index), leaf area index (LAI), and gross primary productivity (GPP). We used vector autoregressive models, impulse response functions, and forecast error variance decomposition to analyze the duration, intensity, and drivers of VGC and of LCE response to precipitation, temperature, and sunshine duration. The results showed that at the tree-species level, VGC in TRW was strongest in the first year, with an average 77% reduction in response intensity by the fourth year. VGC and LCE exhibited species-specific patterns; compared to CE and CH (diffuse-porous species), LF (ring-porous species) exhibited stronger VGC but weaker LCE. For photosynthetic capacity at the ecosystem scale (EVI, LAI, and GPP), VGC and LCE occurred within 96 days. Our study demonstrates that VGC effects play a dominant role in vegetation function and productivity, and that vegetation responses to previous growth states are decoupled from climatic variability. Additionally, we discovered the possibility for tree-ring growth to be decoupled from canopy condition. Investigating VGC and LCE of multiple indicators of vegetation growth at multiple scales has the potential to improve the accuracy of terrestrial global change models.


Subject(s)
Climate Change , Photosynthesis , Trees , Trees/growth & development , Trees/physiology , Liquidambar/growth & development , Liquidambar/physiology , Temperature , Plant Leaves/growth & development , Plant Leaves/physiology , Ecosystem , Satellite Imagery
9.
PLoS One ; 19(7): e0305758, 2024.
Article in English | MEDLINE | ID: mdl-39052553

ABSTRACT

Wind erosion resulting from soil degradation is a significant problem in Iran's Baluchistan region. This study evaluated the accuracy of remote sensing models in assessing degradation severity through field studies. Sentinel-2 Multispectral Imager's (MSI) Level-1C satellite data was used to map Rutak's degradation severity in Saravan. The relationship between surface albedo and spectral indices (NDVI, SAVI, MSAVI, BSI, TGSI) was assessed. Linear regression establishes correlations between the albedo and each index, producing a degradation severity map categorized into five classes based on albedo and spectral indices. Accuracy was tested with 100 ground control points and field observations. The Mann-Whitney U-Test compares remote sensing models with field data. Results showed no significant difference (P > 0.05) between NDVI, SAVI, and MSAVI models with field data, while BSI and TGSI models exhibited significant differences (P ≤ 0.001). The best model, BSI-NDVI, achieves a regression coefficient of 0.86. This study demonstrates the advantage of remote sensing technology for mapping and monitoring degraded areas, providing valuable insights into land degradation assessment in Baluchistan. By accurately identifying severity levels, informed interventions can be implemented to mitigate wind erosion and combat soil degradation in the region.


Subject(s)
Remote Sensing Technology , Iran , Remote Sensing Technology/methods , Environmental Monitoring/methods , Soil/chemistry , Satellite Imagery/methods , Soil Erosion , Wind , Conservation of Natural Resources/methods
10.
Environ Monit Assess ; 196(8): 748, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023687

ABSTRACT

Cyclones pose significant threats to coastal regions, triggering widespread ecological and hydrological changes. This study presents an impact assessment of cyclone Biparjoy, which originated in the Arabian Sea and made landfall on the Gujarat coast of India on June 16, 2023. The research encompasses flood delineation and vegetation impact assessment in the Kachchh and Devbhoomi Dwarka districts of Gujarat, India. Sentinel-1A (VV polarized) imagery is used to precisely map the extent of inundation caused by cyclone Biparjoy. The total flooded area for Kachchh and Devbhoomi Dwarka was calculated to be 6556.73 km2 and 104.49 km2, respectively. The most affected LULC class in Kachchh is found to be bare ground (38.95%) and rangeland (38.94%) which is the major part of the Northeastern Rann region. In Dwarka, most waterlogging has been seen in the cropland (33.04%). The classification of the water and non-water pixels for the pre- and post-images is validated using the ROC curve. The accuracy was 93.2% and 89.5% for pre- and post-images classifications, respectively. Furthermore, vegetation impact was investigated to estimate the cyclone's ecological consequences. Alterations in vegetation density and overall health were estimated by calculating Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from both pre- and post-cyclone Landsat-8 OLI images. The cyclone-induced damage is further assessed for the mangrove trees in Kori Creek. This work contributes to understanding the ecological repercussions of such extreme weather events.


Subject(s)
Cyclonic Storms , Environmental Monitoring , Satellite Imagery , Environmental Monitoring/methods , India , Plants , Floods
11.
Environ Monit Assess ; 196(8): 691, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960930

ABSTRACT

Urban forests face multiple human-mediated pressures leading to compromised ecosystem structure and functioning. Therefore, understanding ecosystem structure in response to ongoing pressures is crucial for sustaining ecological integrity and human well-being. We aim to assess the disturbance and its effects on the vegetation structure of urban forests in Chandigarh using a combination of remote sensing techniques and vegetation surveys. The disturbance was evaluated as a change in NDVI (Normalised Difference Vegetation Index) from 2001 to 2021 by applying the BFAST (Breaks For Additive Season and Trend) algorithm to the MODIS satellite imagery data. A vegetation survey was conducted to compare the species composition, taxonomic and phylogenetic diversity as measures of forest vegetational structure. While signals of disturbance were evident, the changes in vegetation structure were not well established from our study. Further, this analysis indicated no significant differences in vegetation composition due to disturbance (F1,12 = 0.91, p = 0.575). However, the phylogenetic diversity was substantially lower for disturbed plots than undisturbed plots, though the taxonomic diversity was similar among the disturbed and undisturbed plots. Our results confirmed that disturbance effects are more prominent on the phylogenetic than taxonomic diversity. These findings can be considered early signals of disturbance and its impact on the vegetation structure of urban forests and contribute to the knowledge base on urban ecosystems. Our study has implications for facilitating evidence-based decision-making and the development of sustainable management strategies for urban forest ecosystems.


Subject(s)
Biodiversity , Environmental Monitoring , Forests , Environmental Monitoring/methods , India , Cities , Ecosystem , Satellite Imagery , Remote Sensing Technology , Conservation of Natural Resources , Trees , Phylogeny
12.
Environ Monit Assess ; 196(8): 706, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970725

ABSTRACT

The ability of the land surface temperature (LST) and normalized difference vegetation index (NDVI) to examine land surface change is regarded as an important climate variable. However, no significant systematic examination of urbanization concerning environmental variables has been undertaken in the narrow valley of Thimphu, Bhutan. Therefore, this study investigated the impact of land use/land cover (LULC) dynamics on LST, NDVI, and elevation, using Moderate Resolution Imaging Spectroradiometer (MODIS) data collected in Thimphu, Bhutan, from 2000 to 2020. The results showed that LSTs varied substantially among different land use types, with the highest occurring in built-up areas and the lowest occurring in forests. There was a strong negative linear correlation between the LST and NDVI in built-up areas, indicating the impact of anthropogenic activities. Moreover, elevation had a noticeable effect on the LST and NDVI, which exhibited very strong opposite patterns at lower elevations. In summary, LULC dynamics significantly influence LST and NDVI, highlighting the importance of understanding spatiotemporal patterns and their effects on ecological processes for effective land management and environmental conservation. Moreover, this study also demonstrated the applicability of relatively low-cost, moderate spatial resolution satellite imagery for examining the impact of urban development on the urban environment in Thimphu city.


Subject(s)
Environmental Monitoring , Satellite Imagery , Urbanization , Bhutan , Environmental Monitoring/methods , Temperature , Remote Sensing Technology , Cities , Forests , Conservation of Natural Resources
13.
Environ Monit Assess ; 196(8): 736, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009747

ABSTRACT

Global nuclear power is surging ahead in its quest for global carbon neutrality, eyeing an anticipated installed capacity of 436 GW for coastal nuclear power plants by 2040. As these plants operate, they emit substantial amounts of warm water into the ocean, known as thermal discharge, to regulate the temperature of their nuclear reactors. This discharge has the potential to elevate the temperature of the surrounding seawater, potentially influencing the marine ecosystem in the discharge vicinity. Therefore, our study area is on the Qinshan and Jinqimen Nuclear Power Plants in China, employing a blend of Landsat 8/9, and unmanned aerial vehicle (UAV) imagery to gather sea surface temperature (SST) data. In situ measurements validate the temperature data procured through remote sensing. Leveraging these SST observations alongside hydrodynamic and meteorological data from field measurements, we input them into the MIKE 3 model to prognosticate the three-dimensional (3D) spatial distribution and temperature elevation resulting from thermal discharge. The findings reveal that (1) satellite remote sensing can instantly acquire the horizontal distribution of thermal discharge, but with a spatial resolution much lower than that of UAV. The spatial resolution of UAV is higher, but the imaging efficiency of UAV is only 1/40,000 of that of satellite remote sensing. (2) Numerical simulation models can predict the 3D spatial distribution of thermal discharge. Although UAV and satellite remote sensing cannot directly obtain the 3D spatial distribution of thermal discharge, using remotely sensed SST as the temperature field input for the MIKE 3 model can reduce the quantity of measured temperature data and lower the cost of numerical simulation. (3) In the process of monitoring and predicting the thermal discharge of nuclear power plants, achieving an effective balance between monitoring accuracy and cost can be realized by comprehensively considering the advantages and costs of satellite, UAV, and numerical simulation technologies.


Subject(s)
Environmental Monitoring , Nuclear Power Plants , Remote Sensing Technology , Environmental Monitoring/methods , China , Unmanned Aerial Devices , Temperature , Seawater/chemistry , Satellite Imagery
14.
Environ Monit Assess ; 196(8): 738, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009752

ABSTRACT

Accurate retrieval of LST is crucial for understanding and mitigating the effects of urban heat islands, and ultimately addressing the broader challenge of global warming. This study emphasizes the importance of a single day satellite imageries for large-scale LST retrieval. It explores the impact of Spectral indices of the surface parameters, using machine learning algorithms to enhance accuracy. The research proposes a novel approach of capturing satellite data on a single day to reduce uncertainties in LST estimations. A case study over Chandigarh city using Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, and Random Forest (RF) reveals RF's superior performance in LST estimations during both summer and winter seasons. All the ML models gave an R-square of above 0.8 and RF with slightly higher R-square during both summer (0.93) and winter (0.85). Building on these findings, the study extends its focus to Ranchi, demonstrating RF's robustness with impressive accuracy in capturing LST variations. The research contributes to bridging existing gaps in large-scale LST estimation methodologies, offering valuable insights for its diverse applications in understanding Earth's dynamic systems.


Subject(s)
Environmental Monitoring , Machine Learning , Satellite Imagery , Seasons , Temperature , Environmental Monitoring/methods , Global Warming
15.
J Environ Manage ; 365: 121617, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968896

ABSTRACT

Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L-1, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L-1, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L-1/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.


Subject(s)
Environmental Monitoring , Islands , Particulate Matter , Particulate Matter/analysis , Remote Sensing Technology , Ecosystem , Satellite Imagery , China
16.
Environ Monit Assess ; 196(7): 644, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904680

ABSTRACT

Analysis of land use and land cover (LULC) change and its drivers and impacts in the biodiversity hotspot of Bale Mountain's socio-ecological system is crucial for formulating plausible policies and strategies that can enhance sustainable development. The study aimed to analyze spatio-temporal LULC changes and their trends, extents, drives, and impacts over the last 48 years in the Bale Mountain social-ecological system. Landsat imagery data from the years 1973, 1986, 1996, 2014, and 2021 together with qualitative data were used. LULC classification scheme employed a supervised classification method with the application of the maximum likelihood algorithm technique. In the period between 1973 and 2021, agriculture, bare land, and settlement showed areal increment by 153.13%, 295.57%, and 49.03% with the corresponding increased annual rate of 1.93%, 2.86%, and 0.83%, respectively. On the contrary, forest, wood land, bushland, grass land, and water body decreased by 29.97%, 1.36%, 28.16%, 8.63%, and 84.36% during the study period, respectively. During the period, major LULC change dynamics were also observed; the majority of woodland was converted to agriculture (757.8 km2) and grassland (531.3 km2); and forests were converted to other LULC classes, namely woodland (766.5 km2), agriculture (706.1 km2), grassland (34.6 km2), bushland (31.9 km2), settlement (20.5 km2), and bare land (14.3 km2). LULC changes were caused by the expansion of agriculture, settlement, overgrazing, infrastructure development, and fire that were driven by population growth and climate change, and supplemented by inadequate policy and institutional factors. Social and environmental importance and values of land uses and land covers in the study area necessitate further assessment of potential natural resources' user groups and valuation of ecosystem services in the study area. Hence, we suggest the identification of potential natural resource-based user groups, and assessment of the influence of LULC changes on ecosystem services in Bale Mountains Eco Region (BMER) for the sustainable use and managements of land resources.


Subject(s)
Agriculture , Conservation of Natural Resources , Environmental Monitoring , Forests , Ethiopia , Biodiversity , Ecosystem , Grassland , Satellite Imagery
17.
Environ Monit Assess ; 196(7): 665, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935168

ABSTRACT

Downscaling methods are crucial for accessing high-resolution thermal data simultaneously. The DisTRAD model is commonly used for downscaling thermal images, but changes in soil moisture, such as those caused by irrigation operations, can lead to errors in the process. This study investigated the potential use of TOTRAM and OPTRAM models to reduce errors in LST downscaling in irrigated fields. Sentinel satellite imagery was utilised to enhance the resolution of MODIS Land Surface Temperature (LST) from 1000 to 20 m in the fields of Megsal and Hezarjolfa agro-industrial company in Qazvin province. Soil moisture was estimated using the OPTRAM model, and the results were compared with observational data. The findings indicated that on days with NDVI greater than 0.6, the R2 value exceeded 0.88 and the RMSE value was less than 0.06 cm3/cm3. Then, MODIS LST images were downscaled to 20 m using codes in Google Earth Engine (GEE). Evaluation was conducted using observational data from collected land surface temperature data for 36 points. Comparison of the downscaled LST data with observational data on days with irrigation revealed a decrease in MAE and RMSE error indices by approximately 0.4 and 1.2 degrees Celsius, respectively, in the OPTRAM-TPTRAM model compared to the DisTRAD model. Consequently, the OPTRAM-TOTRAM model generally outperforms the DisTRAD model in LST downscaling. Lastly, it is recommended to assess the TOTARM and OPTRAM models for downscaling MODIS sensor LST in other irrigated fields.


Subject(s)
Environmental Monitoring , Satellite Imagery , Temperature , Environmental Monitoring/methods , Soil/chemistry , Models, Theoretical
18.
Environ Monit Assess ; 196(7): 671, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940879

ABSTRACT

The present research endeavors to examine the effectiveness of four gridded precipitation datasets, namely Integrated Multi-satellite Retrievals for GPM (IMERG), Tropical Precipitation Measuring Mission (TRMM), Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), with the observed rainfall data of eight rain gauge stations of India Meteorological Department (IMD) from 2001 to 2019 in Kosi River basin, India. Various statistical metrics, contingency tests, trend analysis, and rainfall anomaly index were utilized at daily, monthly, seasonal, and annual time scales. The categorical metrics namely probability of detection (POD) and false alarm ratio (FAR) indicate that MERRA-2 and IMERG datasets have the highest level of concurrence with the observed daily data. Statistical analysis of gridded datasets with observed dataset of IMD showed that the performance of the IMERG dataset is better than MERRA-2, PERSIANN, and TRMM datasets with "very good" coefficient of determination (R2) and Nash-Sutcliffe Efficiency values for monthly data. Trend analysis of gridded seasonal data of IMERG showed similar trends of observed seasonal data whereas other dataset differs. IMERG also performed well in identifying wet and dry years based on annual data. Discrepancies of the satellite sensor in capturing the precipitation have also been discussed. Thus, the IMERG dataset can be effectively used for hydro-meteorological and climatological investigations in cases of lack of observed datasets.


Subject(s)
Environmental Monitoring , Rain , Rivers , India , Environmental Monitoring/methods , Rivers/chemistry , Seasons , Satellite Imagery , Reproducibility of Results , Neural Networks, Computer , Remote Sensing Technology
19.
Mar Environ Res ; 199: 106605, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878346

ABSTRACT

Satellite-derived chlorophyll-a concentration (Chl-a) is essential for assessing environmental conditions, yet its application in the optically complex waters of the eastern Yellow Sea (EYS) is challenged. This study refines the Chl-a algorithm for the EYS employing a switching approach based on normalized water-leaving radiance at 555 nm wavelength according to turbidity conditions to investigate phytoplankton bloom patterns in the EYS. The refined Chl-a algorithm (EYS algorithm) outperforms prior algorithms, exhibiting a strong alignment with in situ Chl-a. Employing the EYS algorithm, seasonal and bloom patterns of Chl-a are detailed for the offshore and nearshore EYS areas. Distinct seasonal Chl-a patterns and factors influencing bloom initiation differed between the areas, and the peak Chl-a during the bloom period from 2018 to 2020 was significantly lower than the average year in both areas. Specifically, bimodal and unimodal peak patterns in Chl-a were observed in the offshore and nearshore areas, respectively. By investigating the relationships between environmental factors and bloom parameters, we identified that major controlling factors governing bloom initiation were mixed layer depth (MLD) and suspended particulate matter (SPM) in the offshore and nearshore areas, respectively. Additionally, this study proposed that the recent decrease in the peak Chl-a might be caused by rapid environmental changes such as the warming trend of sea surface temperature (SST) and the limitation of nutrients. For example, external forcing, phytoplankton growth, and nutrient dynamics can change due to increased SST and limitation of nutrients, which can lead to a decrease in Chl-a. This study contributes to understanding phytoplankton dynamics in the EYS, highlighting the importance of region-specific considerations in comprehending Chl-a patterns and bloom dynamics.


Subject(s)
Chlorophyll A , Eutrophication , Phytoplankton , Algorithms , China , Chlorophyll/analysis , Chlorophyll A/analysis , Environmental Monitoring , Oceans and Seas , Phytoplankton/physiology , Phytoplankton/growth & development , Satellite Imagery , Seasons , Seawater/chemistry
20.
Sci Data ; 11(1): 659, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906928

ABSTRACT

Trophic state index (TSI) serves as a key indicator for quantifying and understanding the lake eutrophication, which has not been fully explored for long-term water quality monitoring, especially for small and medium inland waters. Landsat satellites offer an effective complement to facilitate the temporal and spatial monitoring of multi-scale lakes. Landsat surface reflectance products were utilized to retrieve the annual average TSI for 2693 lakes over 1 km2 in China from 1984 to 2023. Our method first distinguishes lake types by pixels with a decision tree and then derives relationships between trophic state and algal biomass index. Validation with public reports and existing datasets confirmed the good consistency and reliability. The dataset provides reliable annual TSI results and credible trends for lakes under different area scales, which can serve as a reference for further research and provide convenience for lake sustainable management.


Subject(s)
Environmental Monitoring , Eutrophication , Lakes , China , Satellite Imagery , Water Quality , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL