Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.089
Filter
1.
PLoS Genet ; 20(7): e1011331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968290

ABSTRACT

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.


Subject(s)
DNA, Ribosomal , Ribosomes , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , DNA, Ribosomal/genetics , Ribosomes/metabolism , Ribosomes/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Gene Expression Regulation, Fungal , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Signal Transduction/genetics , Cell Cycle/genetics , Gene Deletion
2.
Yi Chuan ; 46(7): 552-559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016088

ABSTRACT

During meiosis, defects in cohesin localization within the centromere region can result in various diseases. Accurate cohesin localization depends on the Mis4-Ssl3 loading complex. Although it is known that cohesin completes the loading process with the help of the loading complex, the mechanisms underlying its localization in the centromere region remain unclear. Previous studies suggest cohesin localization in the centromere is mediated by phosphorylation of centromeric proteins. In this study, we focused on the Fta2 protein, a component of the Sim4 centromere protein complex. Using bioinformatics methods, potential phosphorylation sites were identified, and fta2-9A and fta2-9D mutants were constructed in Schizosaccharomyces pombe. The phenotypes of these mutants were characterized through testing thiabendazole (TBZ) sensitivity and fluorescent microscopy localization. Results indicated that Fta2 phosphorylation did not impact mitosis but affected chromosome segregation during meiosis. This study suggests that Fta2 phosphorylation is vital for meiosis and may be related to the specific localization of cohesin during this process.


Subject(s)
Meiosis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Meiosis/drug effects , Phosphorylation , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/drug effects , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cohesins , Chromosome Segregation/drug effects
3.
J Cell Biol ; 223(10)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39012625

ABSTRACT

The GTPase Cdc42 regulates polarized growth in most eukaryotes. In the bipolar yeast Schizosaccharomyces pombe, Cdc42 activation cycles periodically at sites of polarized growth. These periodic cycles are caused by alternating positive feedback and time-delayed negative feedback loops. At each polarized end, negative feedback is established when active Cdc42 recruits the Pak1 kinase to prevent further Cdc42 activation. It is unclear how Cdc42 activation returns to each end after Pak1-dependent negative feedback. We find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. Using experimental and mathematical approaches, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.


Subject(s)
Actin-Related Protein 2-3 Complex , Cell Polarity , Endocytosis , Feedback, Physiological , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , cdc42 GTP-Binding Protein , p21-Activated Kinases , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Actins/metabolism
4.
Mol Biol Cell ; 35(8): br14, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38865179

ABSTRACT

Many organisms utilize an actin- and myosin-based cytokinetic ring (CR) to help complete cytokinesis. In Schizosaccharomyces pombe, the Septation Initiation Network (SIN) promotes proper CR function and stability. The SIN is a conserved and essential signaling network consisting of a GTPase and a cascade of kinases assembled at the spindle pole body (SPB). The PP2A SIN inhibitory phosphatase (SIP) complex related to the STRIPAK phosphatase complex is one inhibitor of SIN signaling. The SIP consists of Csc1, Csc2, Csc3, Csc4, Paa1, and the phosphatase subunit Ppa3. Here, we determine that the SIP is anchored at the SPB via the Csc1 FHA domain and that constitutive SPB localization of the SIP is lethal due to persistent SIN inhibition. Disrupting SIP docking at the SPB with a point mutation within the FHA domain or eliminating phosphatase activity by introducing a point mutation within Ppa3 resulted in intact SIP complexes without SIN inhibitory function. Lastly, we defined the unique features of Ppa3 that allow it, but not two other PP2A catalytic subunits, to incorporate into the SIP. Overall, we provide insight into how the SIP complex assembles, localizes, and functions to counteract the SIN with spatiotemporal precision during cytokinesis.


Subject(s)
Cytokinesis , Mitosis , Protein Phosphatase 2 , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Spindle Pole Bodies , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Protein Phosphatase 2/metabolism , Cytokinesis/physiology , Spindle Pole Bodies/metabolism , Protein Domains , Signal Transduction , Spindle Apparatus/metabolism
5.
Yi Chuan ; 46(6): 502-508, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38886153

ABSTRACT

Ssu72 is a component of the yeast cleavage/polyadenylation factor (CPF) complex, which catalyzes the dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II at S5-P and S7-P. It has been shown that Ssu72 phosphatase is involved in regulating chromosome cohesion during mitosis. To further clarify whether Ssu72 phosphatase affects chromosome separation during meiotic division in Schizosaccharomyces pombe, we utilized green fluorescent protein (GFP) to label centromeres and red fluorescent protein to label microtubule protein Atb2. The entire meiotic chromosome separation process of ssu72∆ cells was observed in real-time under fluorescence microscope. It was found that two spindles of ssu72∆ cells crossed during the metaphase and anaphase of the second meiotic division, and this spindle crossing led to a new type of spore defect distribution pattern. The results of this study can provide important reference significance for studying the roles of phosphatase Ssu72 in higher organisms.


Subject(s)
Meiosis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Spindle Apparatus , Schizosaccharomyces/genetics , Schizosaccharomyces/enzymology , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Chromosome Segregation
6.
PLoS Genet ; 20(6): e1011316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833506

ABSTRACT

Splicing is an important step of gene expression regulation in eukaryotes, as there are many mRNA precursors that can be alternatively spliced in different tissues, at different cell cycle phases or under different external stimuli. We have developed several integrated fluorescence-based in vivo splicing reporter constructs that allow the quantification of fission yeast splicing in vivo on intact cells, and we have compared their splicing efficiency in a wild type strain and in a prp2-1 (U2AF65) genetic background, showing a clear dependency between Prp2 and a consensus signal at 5' splicing site (5'SS). To isolate novel genes involved in regulated splicing, we have crossed the reporter showing more intron retention with the Schizosaccharomyces pombe knock out collection. Among the candidate genes involved in the regulation of splicing, we have detected strong splicing defects in two of the mutants -Δcwf12, a member of the NineTeen Complex (NTC) and Δsaf5, a methylosome subunit that acts together with the survival motor neuron (SMN) complex in small nuclear ribonucleoproteins (snRNP) biogenesis. We have identified that strains with mutations in cwf12 have inefficient splicing, mainly when the 5'SS differs from the consensus. However, although Δsaf5 cells also have some dependency on 5'SS sequence, we noticed that when one intron of a given pre-mRNA was affected, the rest of the introns of the same pre-mRNA had high probabilities of being also affected. This observation points Saf5 as a link between transcription rate and splicing.


Subject(s)
RNA Splicing , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Transcription, Genetic , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Gene Expression Regulation, Fungal , Introns/genetics , Mutation , Alternative Splicing/genetics , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splice Sites/genetics , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism
7.
Genes Cells ; 29(7): 567-583, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837646

ABSTRACT

Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by epe1+ disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.


Subject(s)
Heterochromatin , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Heterochromatin/metabolism , Heterochromatin/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Gene Expression Regulation, Fungal , Epigenesis, Genetic , Gene Silencing , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics
8.
PLoS One ; 19(6): e0300434, 2024.
Article in English | MEDLINE | ID: mdl-38905307

ABSTRACT

Homologous recombination is a key process that governs the stability of eukaryotic genomes during DNA replication and repair. Multiple auxiliary factors regulate the choice of homologous recombination pathway in response to different types of replication stress. Using Schizosaccharomyces pombe we have previously suggested the role of DNA translocases Rrp1 and Rrp2, together with Srs2 helicase, in the common synthesis-dependent strand annealing sub-pathway of homologous recombination. Here we show that all three proteins are important for completion of replication after hydroxyurea exposure and provide data comparing the effect of overproduction of Srs2 with Rrp1 and Rrp2. We demonstrate that Srs2 localises to rDNA region and is required for proper replication of rDNA arrays. Upregulation of Srs2 protein levels leads to enhanced replication stress, chromosome instability and viability loss, as previously reported for Rrp1 and Rrp2. Interestingly, our data suggests that dysregulation of Srs2, Rrp1 and Rrp2 protein levels differentially affects checkpoint response: overproduction of Srs2 activates simultaneously DNA damage and replication stress response checkpoints, while cells overproducing Rrp1 mainly launch DNA damage checkpoint. On the other hand, upregulation of Rrp2 primarily leads to replication stress response checkpoint activation. Overall, we propose that Srs2, Rrp1 and Rrp2 have important and at least partially independent functions in the maintenance of distinct difficult to replicate regions of the genome.


Subject(s)
DNA Damage , DNA Helicases , DNA Replication , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Chromosomal Instability , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Hydroxyurea/pharmacology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Stress, Physiological
9.
Arch Microbiol ; 206(7): 303, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878203

ABSTRACT

Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.


Subject(s)
Bacteria , Saccharomyces cerevisiae , Virulence Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Virulence Factors/metabolism , Virulence Factors/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/pathogenicity , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
10.
Curr Biol ; 34(12): R581-R583, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889682

ABSTRACT

A new study reports the identification of a fission yeast dynamin superfamily protein, Mmc1, that self-assembles on the matrix side of the inner mitochondrial membrane and interacts with subunits of the mitochondrial contact site and cristae organizing system to maintain cristae architecture.


Subject(s)
Mitochondria , Mitochondrial Membranes , Schizosaccharomyces , Mitochondrial Membranes/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces/physiology , Mitochondria/metabolism , Mitochondria/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Dynamins/metabolism , Dynamins/genetics
11.
Nat Commun ; 15(1): 4707, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830842

ABSTRACT

Persisting replication intermediates can confer mitotic catastrophe. Loss of the fission yeast telomere protein Taz1 (ortholog of mammalian TRF1/TRF2) causes telomeric replication fork (RF) stalling and consequently, telomere entanglements that stretch between segregating mitotic chromosomes. At ≤20 °C, these entanglements fail to resolve, resulting in lethality. Rif1, a conserved DNA replication/repair protein, hinders the resolution of telomere entanglements without affecting their formation. At mitosis, local nuclear envelope (NE) breakdown occurs in the cell's midregion. Here we demonstrate that entanglement resolution occurs in the cytoplasm following this NE breakdown. However, in response to taz1Δ telomeric entanglements, Rif1 delays midregion NE breakdown at ≤20 °C, in turn disfavoring entanglement resolution. Moreover, Rif1 overexpression in an otherwise wild-type setting causes cold-specific NE defects and lethality, which are rescued by membrane fluidization. Hence, NE properties confer the cold-specificity of taz1Δ lethality, which stems from postponement of NE breakdown. We propose that such postponement promotes clearance of simple stalled RFs, but resolution of complex entanglements (involving strand invasion between nonsister telomeres) requires rapid exposure to the cytoplasm.


Subject(s)
Anaphase , Nuclear Envelope , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Telomere-Binding Proteins , Telomere , Nuclear Envelope/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Telomere/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , DNA Replication
12.
Curr Genet ; 70(1): 8, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913087

ABSTRACT

The Byr2 kinase of fission yeast Schizosaccharomyces pombe is recruited to the membrane with the assistance of Ras1. Byr2 is also negatively regulated by 14-3-3 proteins encoded by rad24 and rad25. We conducted domain and mutational analysis of Byr2 to determine which region is critical for its binding to 14-3-3 proteins. Rad24 and Rad25 bound to both the Ras interaction domain in the N-terminus and to the C-terminal catalytic domain of Byr2. When amino acid residues S87 and T94 of the Ras-interacting domain of Byr2 were mutated to alanine, Rad24 could no longer bind to Byr2. S402, S566, S650, and S654 mutations in the C-terminal domain of Byr2 also abolished its interaction with Rad24 and Rad25. More than three mutations in the C-terminal domain were required to abolish completely its interaction with 14-3-3 protein, suggesting that multiple residues are involved in this interaction. Expression of the N-terminal domain of Byr2 in wild-type cells lowered the mating ratio, because it likely blocked the interaction of Byr2 with Ste4 and Ras1, whereas expression of the catalytic domain of Byr2 increased the mating ratio as a result of freeing from intramolecular regulation by the N-terminal domain of Byr2. The S87A and T94A mutations of Byr2 increased the mating ratio and attenuated inhibition of Byr2 by Rad24; therefore, these two amino acids are critical for its regulation by Rad24. S566 of Byr2 is critical for activity of Byr2 but not for its interaction with 14-3-3 proteins. In this study, we show that 14-3-3 proteins interact with two separate domains in Byr2 as negative regulators.


Subject(s)
14-3-3 Proteins , Protein Binding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Mutation , DNA Mutational Analysis , Protein Domains/genetics , Protein Interaction Domains and Motifs , Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins
13.
Nat Commun ; 15(1): 4729, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830897

ABSTRACT

Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Cohesins , Chromosome Segregation , Mutation , Chromatids/metabolism , Chromatids/genetics , Evolution, Molecular , Meiosis/genetics
14.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889144

ABSTRACT

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Subject(s)
Cytoplasm , Schizosaccharomyces , Spores, Fungal , Trehalose , Spores, Fungal/metabolism , Spores, Fungal/physiology , Schizosaccharomyces/metabolism , Schizosaccharomyces/physiology , Cytoplasm/metabolism , Trehalose/metabolism , Glucose/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction
15.
Bioorg Med Chem Lett ; 109: 129857, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38909706

ABSTRACT

We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity. Introducing an alkyne at the C18 position showed a similar trend, suggesting tolerance is relatively low even for compact functional groups such as alkynes. Although introduction of a diazirine moiety as a photoreactive group at the C5 position decreased the activity, we found that introducing diazirine at the C13 position was acceptable, and compound 38 exhibited potent NSF activity. These findings will be helpful in the development of molecular probes for NSFs.


Subject(s)
Schizosaccharomyces , Structure-Activity Relationship , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Nitrogen/chemistry , Oxylipins/chemistry , Oxylipins/metabolism , Oxylipins/pharmacology , Oxylipins/chemical synthesis , Molecular Structure , Signal Transduction/drug effects
16.
mBio ; 15(7): e0125224, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38899862

ABSTRACT

Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes pho1, pho84, and tgp1) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP8 levels derepress the PHO regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP8 are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1. IP8 toxicosis is ameliorated by mutations in cleavage/polyadenylation and termination factors, perturbations of the Pol2 CTD code, and mutations in SPX domain proteins that act as inositol pyrophosphate sensors. Here, we show that IP8 toxicity is alleviated by deletion of snf22+, the gene encoding the ATPase subunit of the SWI/SNF chromatin remodeling complex, by an ATPase-inactivating snf22-(D996A-E997A) allele, and by deletion of the gene encoding SWI/SNF subunit Sol1. Deletion of snf22+ hyper-repressed pho1 expression in phosphate-replete cells; suppressed the pho1 derepression elicited by mutations in Pol2 CTD, termination factor Seb1, Asp1 pyrophosphatase, and 14-3-3 protein Rad24 (that favor precocious prt lncRNA termination); and delayed pho1 induction during phosphate starvation. RNA analysis and lack of mutational synergies suggest that Snf22 is not impacting 3'-processing/termination. Using reporter assays, we find that Snf22 is important for the activity of the tgp1 and pho1 promoters, but not for the promoters that drive the synthesis of the PHO-repressive lncRNAs. Transcription profiling of snf22∆ and snf22-(D996A-E997A) cells identified an additional set of 66 protein-coding genes that were downregulated in both mutants.IMPORTANCERepression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to inositol pyrophosphate dynamics. Cytotoxic asp1-STF alleles derepress the PHO genes via the action of IP8 as an agonist of precocious lncRNA 3'-processing/termination. IP8 toxicosis is alleviated by mutations of the Pol2 CTD and the 3'-processing/termination machinery that dampen the impact of toxic IP8 levels on termination. In this study, a forward genetic screen revealed that IP8 toxicity is suppressed by mutations of the Snf22 and Sol1 subunits of the SWI/SNF chromatin remodeling complex. Genetic and biochemical evidence indicates that the SWI/SNF is not affecting 3'-processing/termination or lncRNA promoter activity. Rather, SWI/SNF is critical for firing the PHO mRNA promoters. Our results implicate the ATP-dependent nucleosome remodeling activity of SWI/SNF as necessary to ensure full access of PHO-activating transcription factor Pho7 to its binding sites in the PHO mRNA promoters.


Subject(s)
Gene Expression Regulation, Fungal , Regulon , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Inositol Phosphates/metabolism , Loss of Function Mutation , Chromatin Assembly and Disassembly , Transcription Factors/genetics , Transcription Factors/metabolism
17.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738900

ABSTRACT

Bacterial cytoskeletal proteins such as FtsZ and MreB perform essential functions such as cell division and cell shape maintenance. Further, FtsZ and MreB have emerged as important targets for novel antimicrobial discovery. Several assays have been developed to identify compounds targeting nucleotide binding and polymerization of these cytoskeletal proteins, primarily focused on FtsZ. Moreover, many of the assays are either laborious or cost-intensive, and ascertaining whether these proteins are the cellular target of the drug often requires multiple methods. Finally, the toxicity of the drugs to eukaryotic cells also poses a problem. Here, we describe a single-step cell-based assay to discover novel molecules targeting bacterial cytoskeleton and minimize hits that might be potentially toxic to eukaryotic cells. Fission yeast is amenable to high-throughput screens based on microscopy, and a visual screen can easily identify any molecule that alters the polymerization of FtsZ or MreB. Our assay utilizes the standard 96-well plate and relies on the ability of the bacterial cytoskeletal proteins to polymerize in a eukaryotic cell such as the fission yeast. While the protocols described here are for fission yeast and utilize FtsZ from Staphylococcus aureus and MreB from Escherichia coli, they are easily adaptable to other bacterial cytoskeletal proteins that readily assemble into polymers in any eukaryotic expression hosts. The method described here should help facilitate further discovery of novel antimicrobials targeting bacterial cytoskeletal proteins.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Cytoskeletal Proteins , Schizosaccharomyces , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical/methods
18.
Nat Commun ; 15(1): 4322, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773107

ABSTRACT

Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.


Subject(s)
Heterochromatin , Histones , Protein Binding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Heterochromatin/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Histones/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Telomere/metabolism , Telomere/genetics , Nuclear Envelope/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Crystallography, X-Ray
19.
Curr Biol ; 34(12): 2606-2622.e9, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38692277

ABSTRACT

Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial contact site and cristae organizing system (MICOS) complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae-shaping factors, has not been fully determined. Here, we examine the MICOS complex in Schizosaccharomyces pombe, a minimal model whose genome only encodes for four core subunits. Using an unbiased proteomics approach, we identify a poorly characterized inner mitochondrial membrane protein that interacts with MICOS and is required to maintain cristae morphology, which we name Mmc1. We demonstrate that Mmc1 works in concert with MICOS to promote normal mitochondrial morphology and respiratory function. Mmc1 is a distant relative of the dynamin superfamily of proteins (DSPs), GTPases, which are well established to shape and remodel membranes. Similar to DSPs, Mmc1 self-associates and forms high-molecular-weight assemblies. Interestingly, however, Mmc1 is a pseudoenzyme that lacks key residues required for GTP binding and hydrolysis, suggesting that it does not dynamically remodel membranes. These data are consistent with the model that Mmc1 stabilizes cristae architecture by acting as a scaffold to support cristae ultrastructure on the matrix side of the inner membrane. Our study reveals a new class of proteins that evolved early in fungal phylogeny and is required for the maintenance of cristae architecture. This highlights the possibility that functionally analogous proteins work with MICOS to establish cristae morphology in metazoans.


Subject(s)
Mitochondrial Membranes , Mitochondrial Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Dynamins/metabolism , Dynamins/genetics , Mitochondria/metabolism , Mitochondria Associated Membranes
20.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740643

ABSTRACT

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Subject(s)
GTPase-Activating Proteins , Proline , Schizosaccharomyces pombe Proteins , Humans , Amino Acid Sequence , Conserved Sequence , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Models, Molecular , Proline/metabolism , Proline/chemistry , Proline/genetics , Protein Binding , Protein Domains , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/chemistry , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL