Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 609
Filter
1.
Anal Biochem ; 692: 115581, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38815728

ABSTRACT

A DNA polymerase from Thermus aquaticus remains the most popular among DNA polymerases. It was widely applied in various fields involving the application of polymerase chain reaction (PCR), implying the high commercial value of this enzyme. For this reason, an attempt to obtain a high yield of Taq DNA polymerase is continuously conducted. In this study, the l-rhamnose-inducible promoter rhaBAD was utilized due to its ability to produce recombinant protein under tight control in E. coli expression system. Instead of full-length Taq polymerase, an N-terminal deletion of Taq polymerase was selected. To obtain a high-level expression, we attempted to optimize the codon by reducing the rare codon and GC content, and in a second attempt, we optimized the culture conditions for protein expression. The production of Taq polymerase using the optimum culture condition improved the level of expression by up to 3-fold. This approach further proved that a high level of recombinant protein expression could be achieved by yielding a purified Taq polymerase of about 8.5 mg/L of culture. This is the first research publication on the production of Taq polymerase with N-terminal deletion in E. coli with the control of the rhaBAD promoter system.


Subject(s)
Codon , Escherichia coli , Promoter Regions, Genetic , Recombinant Proteins , Taq Polymerase , Escherichia coli/genetics , Escherichia coli/metabolism , Codon/genetics , Taq Polymerase/metabolism , Taq Polymerase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Thermus/genetics , Thermus/enzymology , Base Sequence
2.
Chem Commun (Camb) ; 60(35): 4695-4698, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592754

ABSTRACT

This study presents an innovative method for the highly sensitive detection of apurinic/apyrimidinic endonuclease 1 (APE1), a crucial biomarker and target for cancer diagnosis and treatment. The method is predicated on our discovery that the apurinic or apyrimidinic site (AP site) can inhibit the activity of Taq DNA polymerase. Subsequent experiments further led to the development of a new amplification method based on the digestion activity of Lambda exonuclease. This approach showed potential to detect trace amounts of APE1 in biological samples with high sensitivity.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Taq Polymerase/antagonists & inhibitors , Taq Polymerase/metabolism
3.
Molecules ; 29(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474657

ABSTRACT

DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study aimed to obtain and characterize a new CL7-Taq fusion DNA polymerase, in which the DNA coding sequence of Taq DNA polymerase was fused with that of CL7, a variant of CE7 (Colicin E7 DNase) from Escherichia coli. The resulting novel recombinant open reading frame was cloned and expressed in E. coli. The recombinant CL7-Taq protein exhibited excellent thermostability, extension rate, sensitivity, and resistance to PCR inhibitors. Our results showed that the sensitivity of CL7-Taq DNA polymerase was 100-fold higher than that of wild-type Taq, which required a template concentration of at least 1.8 × 105 nM. Moreover, the extension rate of CL7-Taq was 4 kb/min, which remarkably exceeded the rate of Taq DNA polymerase (2 kb/min). Furthermore, the CL7 fusion protein showed increased resistance to inhibitors of DNA amplification, including lactoferrin, heparin, and blood. Single-cope human genomic targets were readily available from whole blood, and pretreatment to purify the template DNA was not required. Thus, this is a novel enzyme that improved the properties of Taq DNA polymerase, and thus may have wide application in molecular biology and diagnostics.


Subject(s)
Escherichia coli , Nucleic Acid Amplification Techniques , Humans , Taq Polymerase/metabolism , Escherichia coli/metabolism , Polymerase Chain Reaction/methods , DNA/metabolism , Recombinant Proteins/metabolism
4.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 812-820, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545979

ABSTRACT

Taq DNA polymerase, which was discovered from a thermophilic aquatic bacterium (Thermus aquaticus), is an enzyme that possesses both reverse transcriptase activity and DNA polymerase activity. Colicin E (CE) protein belongs to a class of Escherichia coli toxins that utilize the vitamin receptor BtuB as a transmembrane receptor. Among these toxins, CE2, CE7, CE8, and CE9 are classified as non-specific DNase-type colicins. Taq DNA polymerase consists of a 5'→3' exonuclease domain, a 3'→5' exonuclease domain, and a polymerase domain. Taq DNA polymerase lacking the 5'→3' exonuclease domain (ΔTaq) exhibits higher yield but lower processivity, making it unable to amplify long fragments. In this study, we aimed to enhance the processivity of ΔTaq. To this end, we fused dCE with ΔTaq and observed a significant improvement in the processivity of the resulting dCE-ΔTaq compared to Taq DNA polymerase and dCE-Taq. Furthermore, its reverse transcriptase activity was also higher than that of ΔTaq. The most notable improvement was observed in dCE8-ΔTaq, which not only successfully amplified 8 kb DNA fragments within 1 minute, but also yielded higher results compared to other mutants. In summary, this study successfully enhanced the PCR efficiency and reverse transcription activity of Taq DNA polymerase by fusing ΔTaq DNA polymerase with dCE. This approach provides a novel approach for modifying Taq DNA polymerase and holds potential for the development of improved variants of Taq DNA polymerase.


Subject(s)
Colicins , Taq Polymerase/genetics , Taq Polymerase/chemistry , Taq Polymerase/metabolism , Colicins/genetics , Colicins/metabolism , Escherichia coli/metabolism , DNA , Exonucleases , RNA-Directed DNA Polymerase/metabolism , Thermus/genetics , Thermus/metabolism
5.
FEBS J ; 291(13): 2876-2896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38362811

ABSTRACT

Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.


Subject(s)
Molecular Dynamics Simulation , Taq Polymerase , Tyrosine , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism , Taq Polymerase/metabolism , Taq Polymerase/chemistry , Taq Polymerase/genetics , Thermus/enzymology , Thermus/genetics , Amino Acids/chemistry , Amino Acids/metabolism , Amino Acids/genetics , Protein Conformation , Substrate Specificity , Kinetics
6.
Nucleic Acids Res ; 51(11): 5883-5894, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37166959

ABSTRACT

DNA polymerases are essential for nucleic acid synthesis, cloning, sequencing and molecular diagnostics technologies. Conditional intein splicing is a powerful tool for controlling enzyme reactions. We have engineered a thermal switch into thermostable DNA polymerases from two structurally distinct polymerase families by inserting a thermally activated intein domain into a surface loop that is integral to the polymerase active site, thereby blocking DNA or RNA template access. The fusion proteins are inactive, but retain their structures, such that the intein excises during a heat pulse delivered at 70-80°C to generate spliced, active polymerases. This straightforward thermal activation step provides a highly effective, one-component 'hot-start' control of PCR reactions that enables accurate target amplification by minimizing unwanted by-products generated by off-target reactions. In one engineered enzyme, derived from Thermus aquaticus DNA polymerase, both DNA polymerase and reverse transcriptase activities are controlled by the intein, enabling single-reagent amplification of DNA and RNA under hot-start conditions. This engineered polymerase provides high-sensitivity detection for molecular diagnostics applications, amplifying 5-6 copies of the tested DNA and RNA targets with >95% certainty. The design principles used to engineer the inteins can be readily applied to construct other conditionally activated nucleic acid processing enzymes.


Subject(s)
Inteins , Polymerase Chain Reaction , Protein Engineering , Taq Polymerase , Humans , Inteins/genetics , Nucleic Acids , Pathology, Molecular , Protein Splicing , RNA , Taq Polymerase/genetics , Taq Polymerase/metabolism , Polymerase Chain Reaction/methods
7.
Chembiochem ; 24(14): e202200572, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37253903

ABSTRACT

Controlling PCR fidelity is an important issue for molecular biology and high-fidelity PCR is essential for gene cloning. In general, fidelity control is achieved by protein engineering of polymerases. In contrast, only a few studies have reported controlling fidelity using chemically modified nucleotide substrates. In this report, we synthesized nucleotide substrates possessing a modification on Pγ and evaluated the effect of this modification on PCR fidelity. One of the substrates, nucleotide tetraphosphate, caused a modest decrease in Taq DNA polymerase activity and the effect on PCR fidelity was dependent on the type of mutation. The use of deoxyadenosine tetraphosphate enhanced the A : T→G : C mutation dramatically, which is common when using Taq polymerase. Conversely, deoxyguanosine tetraphosphate (dG4P) suppressed this mutation but increased the G : C→A : T mutation during PCR. Using an excess amount of dG4P suppressed both mutations successfully and total fidelity was improved.


Subject(s)
Nucleic Acid Amplification Techniques , Phosphates , Taq Polymerase/genetics , Taq Polymerase/metabolism , Polymerase Chain Reaction , Mutation , Nucleotides
8.
Mol Biol (Mosk) ; 57(2): 185-196, 2023.
Article in Russian | MEDLINE | ID: mdl-37000648

ABSTRACT

DNA polymerases catalyze DNA synthesis during DNA replication, repair, and recombination. A number of DNA polymerases, such as the Taq enzyme from Thermus aquaticus, are used in various applications of molecular biology and biotechnology, in particular as DNA amplification tools. However, the efficiency of these enzymes depends on factors such as DNA origin, primer composition, template length, GC-content, and the ability to form stable secondary structures. These limitations in the use of currently known DNA polymerases lead to the search for new enzymes with improved properties. This review summarizes the main structural and molecular-kinetic features of the functioning of DNA-polymerases belonging to structural family A, including Taq polymerase. A phylogenetic analysis of these enzymes was carried out, which made it possible to establish a highly conserved consensus sequence containing 62 amino acid residues distributed over the structure of the enzyme. A comparative analysis of these amino acid residues among poorly studied DNA-polymerases revealed 7 enzymes that potentially have the properties necessary for use in DNA amplification.


Subject(s)
DNA Replication , DNA , Phylogeny , Taq Polymerase/chemistry , Taq Polymerase/genetics , Taq Polymerase/metabolism , DNA/genetics , Amino Acids
9.
Poult Sci ; 102(2): 102396, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565640

ABSTRACT

Goose astrovirus (GoAstV), goose parvovirus (GPV), and goose circovirus (GoCV) infections have similar symptoms, such as severe diarrhea, and cause serious economic losses to the goose industry globally. Therefore, it is necessary to develop a rapid and accurate method for the differential diagnosis of the 3 viruses. In this study, a TaqMan probe-based multiplex reverse transcription-qualitative polymerase chain reaction (RT-qPCR) method was established and optimized for simultaneous detection of the three viruses. Three pairs of specific primers and probes were designed considering the conserved sequences of ORF2, VP3, and Rep of GoAstV, GPV, and GoCV, respectively. Singleplex real-time RT-qPCR detected a minimum of 10 copies of these genes, while multiplex real-time RT-qPCR detected a minimum of 100 copies. The correlation coefficients exceeded 0.99, and the amplification efficiency was 80 to 100%. The assay had high sensitivity, specificity, and repeatability. In 85 tissue samples, GoAstV and GPV were the main pathogens and demonstrated co-infection. This assay provides a rapid, efficient, specific, and sensitive tool for the detection of GoAstV, GPV, and GoCV. This can facilitate disease management and epidemiological surveillance.


Subject(s)
Chickens , Parvovirinae , Animals , Geese , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Taq Polymerase/metabolism
10.
Phys Chem Chem Phys ; 24(48): 29977-29987, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36472131

ABSTRACT

Proteins have a small volume difference by the diversity of amino acids, which make protein detection and identification a great challenge. Solid-state nanopore as label-free biosensors has attracted attention with high sensitivity. In this work, we investigated the Taq DNA polymerase before and after combining it with a DNA substrate on a solid-state nanopore through molecular dynamics. In simulation, we analyzed the contribution source of nanopore current blockage. In addition to considering the traditional physical exclusion volume model, the non-covalent interaction between the protein molecules and the pore wall also showed to affect the current blockage in the nanopore. When choosing pores of comparable size to protein molecules, the two states of Taq DNA polymerase produce differentiated non-covalent interactions with the pore wall, which enhanced the amplitude difference in current blockage. As a result, the two DNA polymerases can be distinguished through the distinct current blockage. However, when applying additional pulling force or increasing the pore size of the nanopore, the differences between the current blockages are not significant enough to distinguish. The introduction of the non-covalent interaction makes it clear to understand the current blockage differences, which guide the mechanism between molecules with similar structures or volumes.


Subject(s)
Biosensing Techniques , Nanopores , Molecular Dynamics Simulation , Taq Polymerase/metabolism , DNA/chemistry
11.
Anal Biochem ; 659: 114960, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36306819

ABSTRACT

COVID-19 pandemic highlighted the demand for the fast and reliable detection of viral RNA. Although various methods for RNA amplification and detection have been proposed, some limitations, including those caused by reverse transcription (RT), need to be overcome. Here, we report on the direct detection of specific RNA by conventional polymerase chain reaction (PCR) requiring no prior RT step. It was found that Hemo KlenTaq (HKTaq), which is posed as DNA-dependent DNA polymerase, possesses reverse transcriptase activity and provides reproducible amplification of RNA targets with an efficiency comparable to common RT-PCR. Using nasopharyngeal swab extracts from COVID-19-positive patients, the high reliability of SARS-CoV-2 detection based on HKTaq was demonstrated. The most accurate detection of specific targets are provided by nearby primers, which allow to determine RNA in solutions affected to multiple freeze-thaw cycles. HKTaq can be used for elaboration of simplified amplification techniques intended for the analysis of any specific RNA and requiring only one DNA polymerase.


Subject(s)
COVID-19 , RNA, Viral , Humans , Clinical Laboratory Techniques/methods , COVID-19 Testing , Nucleic Acid Amplification Techniques/methods , Pandemics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , RNA, Viral/genetics , RNA, Viral/analysis , RNA-Directed DNA Polymerase/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Taq Polymerase/metabolism
12.
Sci Adv ; 8(10): eabl3522, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35275726

ABSTRACT

Taq DNA polymerase functions at elevated temperatures with fast conformational dynamics-regimes previously inaccessible to mechanistic, single-molecule studies. Here, single-walled carbon nanotube transistors recorded the motions of Taq molecules processing matched or mismatched template-deoxynucleotide triphosphate pairs from 22° to 85°C. By using four enzyme orientations, the whole-enzyme closures of nucleotide incorporations were distinguished from more rapid, 20-µs closures of Taq's fingers domain testing complementarity and orientation. On average, one transient closure was observed for every nucleotide binding event; even complementary substrate pairs averaged five transient closures between each catalytic incorporation at 72°C. The rate and duration of the transient closures and the catalytic events had almost no temperature dependence, leaving all of Taq's temperature sensitivity to its rate-determining open state.


Subject(s)
DNA Replication , Nucleotides , Catalysis , Kinetics , Nucleotides/metabolism , Taq Polymerase/chemistry , Taq Polymerase/genetics , Taq Polymerase/metabolism
13.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197282

ABSTRACT

Real-time PCR is the most utilized nucleic acid testing tool in clinical settings. However, the number of targets detectable per reaction are restricted by current modes. Here, we describe a single-step, multiplex approach capable of detecting dozens of targets per reaction in a real-time PCR thermal cycler. The approach, termed MeltArray, utilizes the 5'-flap endonuclease activity of Taq DNA polymerase to cleave a mediator probe into a mediator primer that can bind to a molecular beacon reporter, which allows for the extension of multiple mediator primers to produce a series of fluorescent hybrids of different melting temperatures unique to each target. Using multiple molecular beacon reporters labeled with different fluorophores, the overall number of targets is equal to the number of the reporters multiplied by that of mediator primers per reporter. The use of MeltArray was explored in various scenarios, including in a 20-plex assay that detects human Y chromosome microdeletions, a 62-plex assay that determines Escherichia coli serovars, a 24-plex assay that simultaneously identifies and quantitates respiratory pathogens, and a minisequencing assay that identifies KRAS mutations, and all of these different assays were validated with clinical samples. MeltArray approach should find widespread use in clinical settings owing to its combined merits of multiplicity, versatility, simplicity, and accessibility.


Subject(s)
Flap Endonucleases/metabolism , Multiplex Polymerase Chain Reaction/methods , Taq Polymerase/metabolism , Chromosome Deletion , Chromosomes, Human, Y , DNA Primers , Escherichia coli/genetics , Fluorescent Dyes/chemistry , Humans , Limit of Detection
14.
CRISPR J ; 5(1): 131-145, 2022 02.
Article in English | MEDLINE | ID: mdl-35076264

ABSTRACT

Detection of genome editing with quantitative polymerase chain reaction (PCR) primarily relies on and is limited by its ability to discriminate genome modification from the wild-type sequence. An enhanced DNA polymerase variant with superior specificity is needed for this application. Here, we perform semi-rational molecular evolution on full-length Taq polymerase to screen high-specific variants that meet the requirements of gene variation detection. We substituted each of the 40 polar amino acids in direct contact with the primer/template duplex and conducted extensive random mutagenesis to generate a Taq mutation library. Screening on a quantitative PCR system with insertion and deletion-containing templates identified a series of improved Taq variants. We demonstrate that the Taq388 variant bearing three amino acid substitutions, S577A, W645R, and I707V, has improved sensitivity to insertion and deletion-derived primer/template mismatch by a ΔCt value of 25-26 and is superior for application in evaluating CRISPR-Cas9 editing efficiency and single-cell clone genotyping. In addition, the Taq variant shows substantial potential for single-nucleotide polymorphism detection by means of allele-specific PCR because of its high sensitivity to mismatches.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Alleles , CRISPR-Cas Systems/genetics , Mutation , Taq Polymerase/metabolism
15.
Cold Spring Harb Protoc ; 2021(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34074738

ABSTRACT

During polymerase chain reaction (PCR), DNA polymerases such as Taq add a single, unpaired residue-preferentially an adenosyl residue-to each 3' end of a double-stranded amplified product. The unpaired terminal (A) residues can pair with a linear T vector that carries an unpaired 3'-thymidyl residue at each end. T vectors can be prepared in the laboratory or they may be purchased ready-made from commercial suppliers. This protocol outlines two methods in common use to generate T vectors.


Subject(s)
Cloning, Molecular/methods , DNA/genetics , Genetic Vectors/genetics , Polymerase Chain Reaction/methods , Taq Polymerase/metabolism , DNA/metabolism , Plasmids/genetics , Thymidine/metabolism
16.
Cold Spring Harb Protoc ; 2021(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34074739

ABSTRACT

The nontemplate-dependent terminal transferase activity inherent in nonproofreading DNA polymerases such as Taq provides a highly efficient method to clone PCR products. The enzyme adds a single, unpaired residue-preferentially an adenosyl residue-to each 3' end of a double-stranded amplified product. The unpaired terminal (A) residues can pair with a linear T vector that carries an unpaired 3'-thymidyl residue at each end. The two chief advantages of TA cloning are speed and lack of reliance on restriction enzymes. The major disadvantage is an inability to clone directionally. For this reason, it is important to pick and analyze several transformed clones when a particular orientation of the amplified fragment is required.


Subject(s)
Cloning, Molecular/methods , DNA/genetics , Genetic Vectors/genetics , Polymerase Chain Reaction/methods , Taq Polymerase/metabolism , DNA/metabolism , DNA Restriction Enzymes/metabolism , Plasmids/genetics , Thymidine/metabolism
17.
J Microbiol Methods ; 186: 106238, 2021 07.
Article in English | MEDLINE | ID: mdl-33991586

ABSTRACT

"Pébrine" is a devastating disease of Bombyx mori silkworms that is highly contagious and can completely destroy an entire crop of silkworms and is thus a serious threat for the viability and profitability of sericulture. The disease is most commonly attributed to microsporidians of the genus Nosema, which are obligate intracellular parasites that are transmitted through spores. Nosema infections in silkworms are diagnosed primarily through light microscopy, which is labour intensive and less reliable, sensitive, and specific than PCR-based techniques. Here, we present the development and optimization of a new TaqMan based assay targeting the ß-tubulin gene in the pébrine disease causing agent Nosema bombycis in silkworms. The assay displayed excellent quantification linearity over multiple orders of magnitude of target amounts and a limit of detection (LOD) of 6.9 × 102 copies of target per reaction. The method is highly specific to N. bombycis with no cross-reactivity to other Nosema species commonly infecting wild silkworms. This specificity was due to three nucleotides in the probe-binding region unique to N. bombycis. The assay demonstrated a high reliability with a Coefficient of variation (CV) <5% for both intra-assay and inter-assay variability. The assay was used to trace experimental N. bombycis infection of silkworm larvae, in the fat body, midgut and ovary tissues, through pupation and metamorphosis to the emerging female moth, and her larval off-spring, confirming the vertical transmission of N. bombycis in silkworms. The TaqMan assay revealed a gradual increase in infection levels in the post-infection samples. The assay is reliable and simple to implement and can be a suitable complement to microscopy for routine diagnostics and surveillance in silkworm egg production centres with appropriate infrastructure.


Subject(s)
Bombyx/microbiology , Nosema/isolation & purification , Polymerase Chain Reaction/methods , Animals , Fungal Proteins/genetics , Fungal Proteins/metabolism , Nosema/genetics , Taq Polymerase/metabolism , Tubulin/genetics , Tubulin/metabolism
18.
Molecules ; 26(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807659

ABSTRACT

G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential.


Subject(s)
Carbocyanines/chemistry , Carbocyanines/metabolism , G-Quadruplexes , Molecular Imaging/methods , DNA/chemistry , DNA/metabolism , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Ligands , Nucleic Acid Conformation , Phthalazines/chemistry , Phthalazines/metabolism , Piperazines/chemistry , Piperazines/metabolism , Porphyrins/chemistry , Porphyrins/metabolism , RNA/chemistry , RNA/metabolism , Taq Polymerase/chemistry , Taq Polymerase/metabolism
19.
Angew Chem Int Ed Engl ; 60(46): 24368-24387, 2021 11 08.
Article in English | MEDLINE | ID: mdl-33539653

ABSTRACT

Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.


Subject(s)
Directed Molecular Evolution , Enzymes/metabolism , Microfluidics/methods , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Emulsions/chemistry , Enzymes/genetics , Escherichia coli/chemistry , Escherichia coli/metabolism , Microfluidics/instrumentation , Mutagenesis , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Taq Polymerase/genetics , Taq Polymerase/metabolism
20.
J Alzheimers Dis ; 82(s1): S283-S297, 2021.
Article in English | MEDLINE | ID: mdl-33216035

ABSTRACT

BACKGROUND: Amyloid-ß peptide (Aß) deposition in Alzheimer's disease (AD) is due to an imbalance in its production/clearance rate. Aß is transported across the blood-brain barrier by LRP1 and P-gp as efflux transporters and RAGE as influx transporter. Vitamin D deficit and polymorphisms of the vitamin D receptor (VDR) gene are associated with high prevalence of mild cognitive impairment (MCI) and AD. Further, vitamin D promotes the expression of LRP1 and P-gp in AD-animal model brains. OBJECTIVE: To associate VDR polymorphisms Apa I (rs7975232), Taq I (rs731236), and Fok I (rs2228570) with the risk of developing MCI in a Chilean population, and to evaluate the relationship of these polymorphisms to the expression of VDR and Aß-transporters in peripheral blood mononuclear cells (PBMCs). METHODS: VDR polymorphisms Apa I, Taq I, and Fok I were determined in 128 healthy controls (HC) and 66 MCI patients. mRNA levels of VDR and Aß-transporters were evaluated in subgroups by qPCR. RESULTS: Alleles A of Apa I and C of Taq I were associated with a lower risk of MCI. HC with the Apa I AA genotype had higher mRNA levels of P-gp and LRP1, while the expression of VDR and RAGE were higher in MCI patients and HC. For Fok I, the TC genotype was associated with lower expression levels of Aß-transporters in both groups. CONCLUSION: We propose that the response to vitamin D treatment will depend on VDR polymorphisms, being more efficient in carriers of protective alleles of Apa I polymorphism.


Subject(s)
Amyloid beta-Peptides/biosynthesis , Amyloid beta-Peptides/genetics , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Polymorphism, Single Nucleotide/genetics , Receptors, Calcitriol/genetics , Aged , Chile/epidemiology , Cognitive Dysfunction/epidemiology , Cohort Studies , Female , Gene Expression , Humans , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Risk Factors , Taq Polymerase/genetics , Taq Polymerase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...