Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.651
Filter
1.
BMC Musculoskelet Disord ; 25(1): 498, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926726

ABSTRACT

BACKGROUND: Chronic low back pain (CLBP) is a frequent disease. It is a critical health concern that can influence functional capacity by restricting living activities. OBJECTIVES: The current study is to investigate the effects of transcutaneous vagus nerve stimulation (TVNs) in the management of CLBP. METHODS: We searched the databases on Google Scholar, PubMed, Web of Science, Cochrane, and Pedro for randomized clinical trial (RCT) studies published in any language that looked at the effectiveness of TVNs in people with chronic LBP. The inclusion criteria were PICO. Participants in the research were people (≥ 18 years) diagnosed with persistent low back pain for more than 3 months. Study quality was assessed using Cochrane ROB 2. RESULTS: Our database search found 1084 RCT. A number of studies that were not necessary for the issue were removed, and the overall outcome was six trials. Risk of bias (ROB) evaluations at the study level (derived from outcomes) are reported. In the six studies, two (33.3%) had an overall uncertain ROB (i.e., some concerns), whereas one (16.7%) had a high overall ROB. Three trials (50%) had a low overall RoB. CONCLUSION: There is still no evidence to support the use of transcutaneous vagus nerve stimulation as a viable therapeutic rehabilitation strategy. Therefore, we recommend high-quality trials and long-term follow-up to evaluate disability, quality of life, and pain outcomes in these patients.


Subject(s)
Chronic Pain , Low Back Pain , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Low Back Pain/therapy , Low Back Pain/diagnosis , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Chronic Pain/therapy , Chronic Pain/diagnosis , Treatment Outcome , Randomized Controlled Trials as Topic , Pain Measurement
2.
PLoS One ; 19(6): e0304115, 2024.
Article in English | MEDLINE | ID: mdl-38861500

ABSTRACT

There are currently no established biomarkers for predicting the therapeutic effectiveness of Vagus Nerve Stimulation (VNS). Given that neural desynchronization is a pivotal mechanism underlying VNS action, EEG synchronization measures could potentially serve as predictive biomarkers of VNS response. Notably, an increased brain synchronization in delta band has been observed during sleep-potentially due to an activation of thalamocortical circuitry, and interictal epileptiform discharges are more frequently observed during sleep. Therefore, investigation of EEG synchronization metrics during sleep could provide a valuable insight into the excitatory-inhibitory balance in a pro-epileptogenic state, that could be pathological in patients exhibiting a poor response to VNS. A 19-channel-standard EEG system was used to collect data from 38 individuals with Drug-Resistant Epilepsy (DRE) who were candidates for VNS implantation. An EEG synchronization metric-the Weighted Phase Lag Index (wPLI)-was extracted before VNS implantation and compared between sleep and wakefulness, and between responders (R) and non-responders (NR). In the delta band, a higher wPLI was found during wakefulness compared to sleep in NR only. However, in this band, no synchronization difference in any state was found between R and NR. During sleep and within the alpha band, a negative correlation was found between wPLI and the percentage of seizure reduction after VNS implantation. Overall, our results suggest that patients exhibiting a poor VNS efficacy may present a more pathological thalamocortical circuitry before VNS implantation. EEG synchronization measures could provide interesting insights into the prerequisites for responding to VNS, in order to avoid unnecessary implantations in patients showing a poor therapeutic efficacy.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Male , Female , Adult , Drug Resistant Epilepsy/therapy , Drug Resistant Epilepsy/physiopathology , Retrospective Studies , Young Adult , Biomarkers , Sleep/physiology , Adolescent , Middle Aged , Electroencephalography Phase Synchronization , Treatment Outcome , Wakefulness/physiology
3.
Trials ; 25(1): 397, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898522

ABSTRACT

BACKGROUND: Borderline personality disorder (BPD) is considered a disorder of emotion regulation resulting from the expression of a biologically determined emotional vulnerability (that is, heightened sensitivity to emotion, increased emotional intensity/reactivity, and a slow return to emotional baseline) combined with exposure to invalidating environments. Vagal tone has been associated with activity in cortical regions involved in emotion regulation and a lower resting state of vagal tone has been observed in BPD patients relative to healthy controls. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has been shown to reduce temper outbursts in adults with Prader-Willi Syndrome, to enhance recognition of emotions in healthy students, and to improve depressive and anxiety symptoms. Furthermore, a single session of taVNS has been shown to acutely alter the recognition of facial expressions of negative valence in adolescents with MDD and increase emotion recognition in controls. However, the effect of taVNS on emotional vulnerability and regulation in individuals diagnosed with BPD has not been investigated. Our aims are to determine if taVNS is effective in acutely reducing emotional vulnerability and improve emotional regulation in BPD patients. METHODS: Forty-two patients will be randomized to a single session of taVNS or sham-taVNS while going through an affect induction procedure. It will consist of the presentation of one neutral and three negative affect-evoking 4-min-long videos in sequence, each of which is followed by a 4-min post-induction period during which participants will rate the quality and intensity of their current self-reported emotions (post-induction ratings) and the perceived effectiveness in managing their emotions during the video presentation. The rating of the current self-reported emotions will be repeated after every post-induction period (recovery ratings). Mixed models with individuals as random effect will be used to investigate the ratings at each stage of the study, taking into account the repeated measures of the same individuals at baseline, pre-induction, post-induction, and recovery. DISCUSSION: The study has potential to yield new insights into the role of vagal tone in emotion dysregulation in BPD and offer preliminary data on the effectiveness of taVNS as a possible non-invasive brain stimulation to treat a core symptom of BPD. TRIAL REGISTRATION: ClinicalTrials.gov NCT05892900. Retrospectively registered on Jun 07, 2023.


Subject(s)
Borderline Personality Disorder , Emotional Regulation , Emotions , Randomized Controlled Trials as Topic , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Borderline Personality Disorder/therapy , Borderline Personality Disorder/psychology , Borderline Personality Disorder/physiopathology , Vagus Nerve Stimulation/methods , Single-Blind Method , Adult , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , Female , Treatment Outcome , Male , Adolescent , Time Factors , Vagus Nerve/physiopathology , Middle Aged
4.
Ugeskr Laeger ; 186(23)2024 Jun 03.
Article in Danish | MEDLINE | ID: mdl-38903031

ABSTRACT

About 40 % of new-onset epilepsy is drug refractory. If epilepsy surgery is not an option or fails, vagal nerve stimulation (VNS) can be considered. VNS efficacy is reported as more than 50 % seizure frequency reduction in 50-56 % of patients. Features in the newer models offer additional treatment optimization possibilities. Side effects include hoarseness, cough, and dyspnoea. Caution is advised for patients with sleep apnoea or lung disease. VNS has specific limitations concerning MRI. This review presents an overview of VNS treatment in Denmark and discusses future challenges.


Subject(s)
Drug Resistant Epilepsy , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/adverse effects , Drug Resistant Epilepsy/therapy
5.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38719446

ABSTRACT

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Subject(s)
Drug-Seeking Behavior , Extinction, Psychological , Neuronal Plasticity , Prefrontal Cortex , Rats, Sprague-Dawley , Receptor, trkB , Vagus Nerve Stimulation , Animals , Male , Rats , Vagus Nerve Stimulation/methods , Drug-Seeking Behavior/physiology , Drug-Seeking Behavior/drug effects , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Extinction, Psychological/physiology , Extinction, Psychological/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Self Administration , Cocaine/pharmacology , Cocaine/administration & dosage
6.
Medicina (Kaunas) ; 60(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38792911

ABSTRACT

Background and Objectives: This review systematically evaluates the potential of electrical neuromodulation techniques-vagus nerve stimulation (VNS), sacral nerve stimulation (SNS), and tibial nerve stimulation (TNS)-as alternative treatments for inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's Disease (CD). It aims to synthesize current evidence on the efficacy and safety of these modalities, addressing the significant burden of IBD on patient quality of life and the limitations of existing pharmacological therapies. Materials and Methods: We conducted a comprehensive analysis of studies from PubMed, focusing on research published between 1978 and 2024. The review included animal models and clinical trials investigating the mechanisms, effectiveness, and safety of VNS, SNS, and TNS in IBD management. Special attention was given to the modulation of inflammatory responses and its impact on gastrointestinal motility and functional gastrointestinal disorders associated with IBD. Results: Preliminary findings suggest that VNS, SNS, and TNS can significantly reduce inflammatory markers and improve symptoms in IBD patients. These techniques also show potential in treating related gastrointestinal disorders during IBD remission phases. However, the specific mechanisms underlying these benefits remain to be fully elucidated, and there is considerable variability in treatment parameters. Conclusions: Electrical neuromodulation holds promise as a novel therapeutic avenue for IBD, offering an alternative to patients who do not respond to traditional treatments or experience adverse effects. The review highlights the need for further rigorous studies to optimize stimulation parameters, understand long-term outcomes, and integrate neuromodulation effectively into IBD treatment protocols.


Subject(s)
Electric Stimulation Therapy , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/physiopathology , Electric Stimulation Therapy/methods , Animals , Vagus Nerve Stimulation/methods , Tibial Nerve/physiology , Quality of Life
7.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794024

ABSTRACT

An electroceutical is a medical device that uses electrical signals to control biological functions. It can be inserted into the human body as an implant and has several crucial advantages over conventional medicines for certain diseases. This research develops a new vagus nerve simulation (VNS) electroceutical through an innovative approach to overcome the communication limitations of existing devices. A phased array antenna with a better communication performance was developed and applied to the electroceutical prototype. In order to effectively respond to changes in communication signals, we developed the steering algorithm and firmware, and designed the smart communication protocol that operates at a low power that is safe for the patients. This protocol is intended to improve a communication sensitivity related to the transmission and reception distance. Based on this technical approach, the heightened effectiveness and safety of the prototype have been ascertained, with the actual clinical tests using live animals. We confirmed the signal attenuation performance to be excellent, and a smooth communication was achieved even at a distance of 7 m. The prototype showed a much wider communication range than any other existing products. Through this, it is conceivable that various problems due to space constraints can be resolved, hence presenting many benefits to the patients whose last resort to the disease is the VNS electroceutical.


Subject(s)
Algorithms , Vagus Nerve , Vagus Nerve/physiology , Animals , Humans , Prostheses and Implants , Vagus Nerve Stimulation/methods , Vagus Nerve Stimulation/instrumentation , Signal Processing, Computer-Assisted
8.
BMJ Open ; 14(5): e082906, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772894

ABSTRACT

INTRODUCTION: With an increasing incidence and significant effects on patients, tinnitus has become a major disease burden. There is a dearth of therapies with established efficacy for tinnitus. Transcutaneous auricular vagus nerve stimulation (ta-VNS) is being investigated as a potential therapy for tinnitus, but the current body of evidence remains inconclusive due to conflicting results across different studies. As a result, this protocol aims to synthesise and update the evidence to clarify whether ta-VNS is effective and safe for alleviating tinnitus. METHODS AND ANALYSIS: To identify relevant randomised controlled trials (RCTs), seven representative bibliographical databases will be searched from their inception to December 2023: PubMed, Embase (via OVID), Cochrane Library, Chinese National Knowledge Infrastructure, Wangfang Database, Chinese BioMedical Literature Database, and Chongqing VIP Chinese Science and Technology Periodical Database. Publications in English or Chinese will be considered for inclusion. RCTs comparing ta-VNS with active treatments, no intervention, waitlist control or sham ta-VNS in adult patients with subjective tinnitus will be included. Studies on objective tinnitus will be excluded. Primary outcome is tinnitus symptom severity measured by validated scales. With all eligible trials included, when applicable, quantitative analysis via meta-analyses will be performed using RevMan V.5.4.1 software. Otherwise, a qualitative analysis will be conducted. The methodological quality of the included RCTs will be assessed using the Risk of Bias 2.0 tool. Sensitivity analyses, subgroup analysis and publication bias evaluation will also be performed. The Grading of Recommendations, Assessment, Development, and Evaluation approach will be used to grade the certainty of the evidence. ETHICS AND DISSEMINATION: Ethical approval is not required for this systematic review, as no primary data will be collected. The results will be reported and disseminated through publication in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42022351917.


Subject(s)
Meta-Analysis as Topic , Systematic Reviews as Topic , Tinnitus , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Tinnitus/therapy , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Randomized Controlled Trials as Topic , Research Design , Treatment Outcome
9.
Sci Rep ; 14(1): 11224, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755234

ABSTRACT

The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Male , Female , Adult , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , Evoked Potentials, Motor/physiology , Transcranial Magnetic Stimulation/methods , Vagus Nerve/physiology
10.
BMJ Open ; 14(5): e083888, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821572

ABSTRACT

INTRODUCTION: Prolonged disorders of consciousness (pDoC) are a catastrophic condition following brain injury with few therapeutic options. Transcutaneous auricular vagal nerve stimulation (taVNS), a safe, non-invasive intervention modulating thalamo-cortical connectivity and brain function, is a possible treatment option of pDoC. We developed a protocol for a randomised controlled study to evaluate the effectiveness of taVNS on consciousness recovery in patients with pDoC (TAVREC). METHODS AND ANALYSIS: The TAVREC programme is a multicentre, triple-blind, randomised controlled trial with 4 weeks intervention followed by 4 weeks follow-up period. A minimum number of 116 eligible pDoC patients will be recruited and randomly receive either: (1) conventional therapy plus taVNS (30 s monophasic square current of pulse width 300 µs, frequency of 25 Hz and intensity of 1 mA followed by 30 s rest, 60 min, two times per day, for 4 weeks); or (2) conventional therapy plus taVNS placebo. Primary outcome of TAVREC is the rate of improved consciousness level based on the Coma Recovery Scale-Revised (CRS-R) at week 4. Secondary outcomes are CRS-R total and subscale scores, Glasgow Coma Scale score, Full Outline of UnResponsiveness score, ECG parameters, brainstem auditory evoked potential, upper somatosensory evoked potential, neuroimaging parameters from positron emission tomography/functional MRI, serum biomarkers associated with consciousness level and adverse events. ETHICS AND DISSEMINATION: This study was reviewed and approved by the Research Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (Reference number: 2023-SR-392). Findings will be disseminated in a peer-reviewed journal and presented at relevant conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300073950.


Subject(s)
Consciousness Disorders , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Consciousness Disorders/therapy , Consciousness Disorders/physiopathology , China , Transcutaneous Electric Nerve Stimulation/methods , Consciousness , Randomized Controlled Trials as Topic , Adult , Multicenter Studies as Topic , Recovery of Function , Female , Treatment Outcome , Male
11.
J Neural Eng ; 21(3)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38718787

ABSTRACT

Objective. Vagus nerve stimulation (VNS) is being investigated as a potential therapy for cardiovascular diseases including heart failure, cardiac arrhythmia, and hypertension. The lack of a systematic approach for controlling and tuning the VNS parameters poses a significant challenge. Closed-loop VNS strategies combined with artificial intelligence (AI) approaches offer a framework for systematically learning and adapting the optimal stimulation parameters. In this study, we presented an interactive AI framework using reinforcement learning (RL) for automated data-driven design of closed-loop VNS control systems in a computational study.Approach.Multiple simulation environments with a standard application programming interface were developed to facilitate the design and evaluation of the automated data-driven closed-loop VNS control systems. These environments simulate the hemodynamic response to multi-location VNS using biophysics-based computational models of healthy and hypertensive rat cardiovascular systems in resting and exercise states. We designed and implemented the RL-based closed-loop VNS control frameworks in the context of controlling the heart rate and the mean arterial pressure for a set point tracking task. Our experimental design included two approaches; a general policy using deep RL algorithms and a sample-efficient adaptive policy using probabilistic inference for learning and control.Main results.Our simulation results demonstrated the capabilities of the closed-loop RL-based approaches to learn optimal VNS control policies and to adapt to variations in the target set points and the underlying dynamics of the cardiovascular system. Our findings highlighted the trade-off between sample-efficiency and generalizability, providing insights for proper algorithm selection. Finally, we demonstrated that transfer learning improves the sample efficiency of deep RL algorithms allowing the development of more efficient and personalized closed-loop VNS systems.Significance.We demonstrated the capability of RL-based closed-loop VNS systems. Our approach provided a systematic adaptable framework for learning control strategies without requiring prior knowledge about the underlying dynamics.


Subject(s)
Computer Simulation , Reinforcement, Psychology , Vagus Nerve Stimulation , Vagus Nerve Stimulation/methods , Animals , Rats , Heart Rate/physiology , Cardiovascular System , Algorithms , Artificial Intelligence
12.
Neurogastroenterol Motil ; 36(6): e14815, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735698

ABSTRACT

OBJECTIVE: There has been recent clinical interest in the use of vagus nerve stimulation (VNS) for treating gastrointestinal disorders as an alternative to drugs or gastric electrical stimulation. However, effectiveness of burst stimulation has not been demonstrated. We investigated the ability of bursting and continuous VNS to influence gastric and pyloric activity under a range of stimulation parameters and gastric pressures. The goals of this study were to determine which parameters could optimally excite or inhibit gastric activity. MATERIALS AND METHODS: Data were collected from 21 Sprague-Dawley rats. Under urethane anesthesia, a rubber balloon was implanted into the stomach, connected to a pressure transducer and a saline infusion pump. A pressure catheter was inserted at the pyloric sphincter and a bipolar nerve cuff was implanted onto the left cervical vagus nerve. The balloon was filled to 15 cmH2O. Stimulation trials were conducted in a consistent order; the protocol was then repeated at 25 and 35 cmH2O. The nerve was then transected and stimulation repeated to investigate directionality of effects. RESULTS: Bursting stimulation at the bradycardia threshold caused significant increases in gastric contraction amplitude with entrainment to the bursting frequency. Some continuous stimulation trials could also cause increased contractions but without frequency changes. Few significant changes were observed at the pylorus, except for frequency entrainment. These effects could not be uniquely attributed to afferent or efferent activity. SIGNIFICANCE: Our findings further elucidate the effects of different VNS parameters on the stomach and pylorus and provide a basis for future studies of bursting stimulation for gastric neuromodulation.


Subject(s)
Muscle Contraction , Rats, Sprague-Dawley , Stomach , Vagus Nerve Stimulation , Animals , Vagus Nerve Stimulation/methods , Rats , Stomach/innervation , Stomach/physiology , Muscle Contraction/physiology , Male , Gastrointestinal Motility/physiology , Vagus Nerve/physiology , Pylorus/innervation , Pylorus/physiology , Pressure
13.
CNS Neurosci Ther ; 30(5): e14757, 2024 May.
Article in English | MEDLINE | ID: mdl-38747078

ABSTRACT

BACKGROUND: With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS: This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS: Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS: Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.


Subject(s)
Consciousness Disorders , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Vagus Nerve Stimulation , Humans , Consciousness Disorders/therapy , Transcranial Magnetic Stimulation/methods , Transcranial Magnetic Stimulation/trends , Transcranial Direct Current Stimulation/methods , Vagus Nerve Stimulation/methods , Vagus Nerve Stimulation/trends , Transcutaneous Electric Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/trends
14.
Neurorehabil Neural Repair ; 38(7): 493-505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38712875

ABSTRACT

BACKGROUND: Recent evidence demonstrates that manually triggered vagus nerve stimulation (VNS) combined with rehabilitation leads to increased recovery of upper limb motor function after stroke. This approach is premised on studies demonstrating that the timing of stimulation relative to movements is a key determinant in the effectiveness of this approach. OBJECTIVE: The overall goal of the study was to identify an algorithm that could be used to automatically trigger VNS on the best movements during rehabilitative exercises while maintaining a desired interval between stimulations to reduce the burden of manual stimulation triggering. METHODS: To develop the algorithm, we analyzed movement data collected from patients with a history of neurological injury. We applied 3 different algorithms to the signal, analyzed their triggering choices, and then validated the best algorithm by comparing triggering choices to those selected by a therapist delivering VNS therapy. RESULTS: The dynamic algorithm triggered above the 95th percentile of maximum movement at a rate of 5.09 (interquartile range [IQR] = 0.74) triggers per minute. The periodic algorithm produces stimulation at set intervals but low movement selectivity (34.05%, IQR = 7.47), while the static threshold algorithm produces long interstimulus intervals (27.16 ± 2.01 seconds) with selectivity of 64.49% (IQR = 25.38). On average, the dynamic algorithm selects movements that are 54 ± 3% larger than therapist-selected movements. CONCLUSIONS: This study shows that a dynamic algorithm is an effective strategy to trigger VNS during the best movements at a reliable triggering rate.


Subject(s)
Algorithms , Stroke Rehabilitation , Vagus Nerve Stimulation , Humans , Male , Middle Aged , Female , Stroke Rehabilitation/methods , Adult , Aged , Upper Extremity/physiopathology , Movement/physiology
15.
CNS Neurosci Ther ; 30(5): e14755, 2024 May.
Article in English | MEDLINE | ID: mdl-38752512

ABSTRACT

BACKGROUND: Depression is a common psychiatric disorder in diabetic patients. Depressive mood associated with obesity/metabolic disorders is related to the inflammatory response caused by long-term consumption of high-fat diets, but its molecular mechanism is unclear. In this study, we investigated whether the antidepressant effect of transcutaneous auricular vagus nerve stimulation (taVNS) in high-fat diet rats works through the P2X7R/NLRP3/IL-1ß pathway. METHODS: We first used 16S rRNA gene sequencing analysis and LC-MS metabolomics assays in Zucker diabetic fatty (ZDF) rats with long-term high-fat diet (Purina #5008) induced significant depression-like behaviors. Next, the forced swimming test (FST) and open field test (OFT) were measured to evaluate the antidepressive effect of taVNS. Immunofluorescence and western blotting (WB) were used to measure the microglia state and the expression of P2X7R, NLRP3, and IL-1ß in PFC. RESULTS: Purina#5008 diet induced significant depression-like behaviors in ZDF rats and was closely related to purine and inflammatory metabolites. Consecutive taVNS increased plasma insulin concentration, reduced glycated hemoglobin and glucagon content in ZDF rats, significantly improved the depressive-like phenotype in ZDF rats through reducing the microglia activity, and increased the expression of P2X7R, NLRP3, and IL-1ß in the prefrontal cortex (PFC). CONCLUSION: The P2X7R/NLRP3/IL-1ß signaling pathway may play an important role in the antidepressant-like behavior of taVNS, which provides a promising mechanism for taVNS clinical treatment of diabetes combined with depression.


Subject(s)
Depression , Diet, High-Fat , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Prefrontal Cortex , Rats, Zucker , Receptors, Purinergic P2X7 , Vagus Nerve Stimulation , Animals , Prefrontal Cortex/metabolism , Diet, High-Fat/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Depression/metabolism , Depression/therapy , Depression/etiology , Male , Rats , Interleukin-1beta/metabolism , Vagus Nerve Stimulation/methods , Receptors, Purinergic P2X7/metabolism , Phenotype
16.
Epilepsy Res ; 203: 107383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795656

ABSTRACT

The aim of this single-centre, retrospective, observational study was to evaluate long-term effectiveness of vagus nerve stimulation (VNS) in drug-resistant epilepsy (DRE) by using retention rate as a surrogate measure for seizure reduction. We included all patients with DRE, treated at the adult neurology department of the University Hospitals Leuven and who started VNS therapy from January 1, 1994, until May 1, 2021, with follow-up data cutoff on January 1, 2023. Retention rate of VNS was defined as the percentage of patients who maintain VNS at established time points. We estimated cumulative retention rate and battery replacement rate and correlated these with seizure reduction, using Kaplan-Meier analysis. Statistical analysis of potential predictors of VNS outcome (age, sex and epilepsy duration at implantation) was performed using mono- and multivariate analyses. VNS was started in 110 patients with DRE, with a mean follow-up of 8.7 years (SD 6.5). VNS was discontinued in 55 patients (50%), with ineffectiveness as the main reason for discontinuation (98%). The battery was replaced at least once in 42 patients (38%). Estimated retention rates were 70%, 52%, 45% and 33% after 5, 10, 15 and 20 years, respectively. Estimated first battery replacement rates were 16%, 42% and 47% after 5, 10 and 15 years, respectively. Both estimates showed a statistically significant correlation with seizure reduction. No independent predictors of long-term outcome of VNS were found. This is the first long-term study using retention rate of VNS to assess effectiveness. VNS is a well-tolerated therapy, but retention rates decline with long follow-up.


Subject(s)
Drug Resistant Epilepsy , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Male , Female , Retrospective Studies , Drug Resistant Epilepsy/therapy , Adult , Treatment Outcome , Middle Aged , Young Adult , Follow-Up Studies , Adolescent
17.
Complement Ther Clin Pract ; 56: 101862, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815433

ABSTRACT

BACKGROUND: In recent years, human and animal studies have provided increasing evidence that vagus nerve stimulation (VNS) can produce analgesic effects as well as alleviating resistant epilepsy and depression. Our study was designed to compare the efficacy of transcutaneous auricular vagus nerve stimulation with conventional low back rehabilitation in patients with chronic low back pain (CLBP). METHODS: Sixty patients with LBP were randomly divided into two groups. Group 1 received conventional rehabilitation and home exercise, and Group 2 received transcutaneous auricular VNS and home exercise. Both groups received treatment five days a week for three weeks. Trunk mobility (Modified Schober test, fingertip-to-floor test), muscle strength (CSMI-Cybex Humac-Norm isokinetic dynamometer and Lafayette manual muscle strength measuring device), trunk endurance, balance tests, Visual Analog Scale, Beck Depression Scale, Pittsburgh Sleep Quality Index, Oswestry Disability Index were evaluated. RESULTS: At the end of three weeks, within-group assessment results showed positive effects on mobility, functional status, depression and sleep in all groups (p < 0.05). Pain level, endurance time and flexion trunk muscle strength results showed more improvement in Group 2 (p < 0.05). Some parameters of isokinetic lower extremity quadriceps muscle strength and fall risk scores showed a significant improvement in Group 1 (p < 0.05). DISCUSSION: VNS has been observed to be more effective on pain, trunk muscle strength and endurance duration and sleep status. Auricular VNS may be included in the treatment of patients with CLBP in whom conventional physical therapy is inadequate or not applicable.


Subject(s)
Low Back Pain , Vagus Nerve Stimulation , Humans , Low Back Pain/therapy , Low Back Pain/rehabilitation , Male , Female , Adult , Middle Aged , Vagus Nerve Stimulation/methods , Muscle Strength/physiology , Exercise Therapy/methods , Treatment Outcome , Pain Measurement , Chronic Pain/therapy , Chronic Pain/rehabilitation
18.
Seizure ; 119: 84-91, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820674

ABSTRACT

BACKGROUND: Several studies have suggested that transcutaneous vagus nerve stimulation (tVNS) may be effective for the treatment of epilepsy. However, auricular acupoint therapy (including auricular acupuncture and auricular point-sticking therapy), a method of stimulating the vagus nerve, has been poorly reviewed. This systematic review is the first to categorize auricular acupoint therapy as transcutaneous auricular vagus nerve stimulation (taVNS), aiming to assess the efficacy of taVNS in patients with epilepsy (PWE), and to analyse the results of animal experiments on the antiepileptic effects of taVNS. METHODS: We searched MEDLINE, EMBASE, Web of Science, Scopus, and various Chinese databases from their inception to June 10, 2023 and found nine clinical studies (including a total of 788 PWE) and eight preclinical studies. We performed a meta-analysis and systematic review of these articles to assess the efficacy of taVNS in PWE and the association between taVNS and electroencephalogram (EEG) changes. We also analysed the effects on epileptic behaviour, latency of the first seizure, and seizure frequency in epileptic animals. The PRISMA 2020 checklist provided by the EQUATOR Network was used in this study. RESULTS: taVNS had a higher response rate in PWE than the control treatment (OR = 2.94, 95 % CI = 1.94 - 4.46, P < 0.05). The analysis showed that the taVNS group showed wider EEG changes than the control group (OR = 2.17, 95 % CI 1.03 to 4.58, P < 0.05). The preclinical studies analysis revealed significant differences in epileptic behaviour (SMD = -4.78, 95 % CI -5.86 to -3.71, P < 0.05) and seizure frequency (SMD = -5.06, 95 % CI -5.96 to -4.15, P < 0.05) between the taVNS and control groups. No statistical difference was found in the latency of the first seizure between the two groups (SMD =13.54; 95 % CI 7.76 to 19.33, P < 0.05). CONCLUSION: Based on the available data, PWE may benefit from the use of taVNS. taVNS is an effective procedure for improving epileptic behaviour in animal models.


Subject(s)
Epilepsy , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Epilepsy/therapy , Epilepsy/physiopathology , Transcutaneous Electric Nerve Stimulation/methods , Animals
19.
Compr Psychiatry ; 132: 152488, 2024 07.
Article in English | MEDLINE | ID: mdl-38657358

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is often marked by impaired motivation and reward processing, known as anhedonia. Many patients do not respond to first-line treatments, and improvements in motivation can be slow, creating an urgent need for rapid interventions. Recently, we demonstrated that transcutaneous auricular vagus nerve stimulation (taVNS) acutely boosts effort invigoration in healthy participants, but its effects on depression remain unclear. OBJECTIVE: To assess the impact of taVNS on effort invigoration and maintenance in a sample that includes patients with MDD, evaluating the generalizability of our findings. METHODS: We used a single-blind, randomized crossover design in 30 patients with MDD and 29 matched (age, sex, and BMI) healthy control participants (HCP). RESULTS: Consistent with prior findings, taVNS increased effort invigoration for rewards in both groups during Session 1 (p = .040), particularly for less wanted rewards in HCP (pboot < 0.001). However, invigoration remained elevated in all participants, and no acute changes were observed in Session 2 (Δinvigoration = 3.3, p = .12). Crucially, throughout Session 1, we found taVNS-induced increases in effort invigoration (pboot = 0.008) and wanting (pboot = 0.010) in patients with MDD, with gains in wanting maintained across sessions (Δwanting = 0.06, p = .97). CONCLUSIONS: Our study replicates the invigorating effects of taVNS in Session 1 and reveals its generalizability to depression. Furthermore, we expand upon previous research by showing taVNS-induced conditioning effects on invigoration and wanting within Session 1 in patients that were largely sustained. While enduring motivational improvements present challenges for crossover designs, they are highly desirable in interventions and warrant further follow-up research.


Subject(s)
Cross-Over Studies , Depressive Disorder, Major , Motivation , Reward , Vagus Nerve Stimulation , Humans , Female , Male , Vagus Nerve Stimulation/methods , Depressive Disorder, Major/therapy , Depressive Disorder, Major/psychology , Adult , Single-Blind Method , Middle Aged , Anhedonia
20.
Sci Adv ; 10(17): eadn3760, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669336

ABSTRACT

Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.


Subject(s)
B-Lymphocytes , Germinal Center , Receptors, Nicotinic , Vagus Nerve Stimulation , alpha7 Nicotinic Acetylcholine Receptor , Animals , Germinal Center/metabolism , Germinal Center/immunology , Vagus Nerve Stimulation/methods , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Mice , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Dendritic Cells, Follicular/metabolism , Dendritic Cells, Follicular/immunology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/immunology , Receptors, Antigen, B-Cell/metabolism , Cell Differentiation , Mice, Inbred C57BL , Immunoglobulin G/immunology , Vagus Nerve/metabolism , Vagus Nerve/physiology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...