Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.412
Filter
1.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994930

ABSTRACT

B cell epitopes must be visible for recognition by cognate B cells and/or antibodies. Here, we studied that premise for known linear B cell epitopes that were collected from the Immune Epitope Database as being recognized by humans during microbial infections. We found that the majority of such known B cell epitopes are virus-specific linear B cell epitopes (87.96%), and most are located in antigens that remain enclosed in host cells and/or virus particles, preventing antibody recognition (18,832 out of 29,225 epitopes). Moreover, we estimated that only a minority (32.72%) of the virus-specific linear B cell epitopes that are found in exposed viral regions (e.g., the ectodomains of envelope proteins) are solvent accessible on intact antigens. Hence, we conclude that ample degradation/processing of viral particles and/or infected cells must occur prior to B cell recognition, thus shaping the B cell epitope repertoire.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, B-Lymphocyte/immunology , Humans , B-Lymphocytes/immunology , Antigens, Viral/immunology , Proteolysis , Viruses/immunology
2.
J Med Virol ; 96(7): e29807, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39037069

ABSTRACT

The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.


Subject(s)
Virus Diseases , Humans , Virus Diseases/immunology , Virus Diseases/metabolism , Animals , Amino Acids/metabolism , Host-Pathogen Interactions/immunology , Viruses/immunology , Glycolysis , Glucose/metabolism
3.
Front Immunol ; 15: 1390149, 2024.
Article in English | MEDLINE | ID: mdl-39021576

ABSTRACT

Background: Neuroinflammation represents the immune response of the central nervous system to nerve injury, infection, toxin stimulation, or autoimmunity and is implicated in a wide range of neurological disorders. Viruses play a pivotal role as extrinsic biological drivers in neuroinflammation; however, numerous aspects remain unexplored. In this study, we employed bibliometric analysis to assess the current status of viral research in neuroinflammation and anticipate future research directions and emerging trends. Methods: Conduct a comprehensive search for scholarly publications within the Web of Science Core Collection database, with search terms on neuroinflammation and virus. Apply Microsoft Excel Office, Hiplot, R (version 4.3.1), VOSviewer (version 1.6.20) and CiteSpace (6.2.R6, advanced) software for the bibliometric analysis and visualization. Results: A total of 4230 articles and reviews on virus and neuroinflammation were identified, demonstrating a consistent upward trend over time. The United States was the country that contributed the most publications. Approximately 22274 authors from 4474 institutions contributed to the research. Johns Hopkins University leads with the highest number of publications and citations. The top three authors with the most published articles on this field are Power, C., Lane, T. E., and Buch, S. The Journal of Neuroinflammation is the most authoritative choice for researchers. The main research focuses in this field include multiple sclerosis, Parkinson's disease, blood-brain barrier, COVID-19, Alzheimer's disease, gene therapy. In recent years, stress have emerged as hot keywords, particularly depression, human immunodeficiency virus-associated neurocognitive disorders, blood-brain barrier, gut microbiota related directions, indicating a potential shift in research focus. Conclusion: Research on the virus and neuroinflammation has attracted increasing attention in the past decade. European and American countries have been pivotal in conducting research on virus and neuroinflammation, while China has produced a significant number of publications, its impact is still limited. Stress is likely to emerge as the next area of focus in this field. The association and regulation between viral infection and psychiatric disorders are not fully understood, and further research is needed to explore the role of neuroinflammation caused by different types of viral infection and psychiatric disorders.


Subject(s)
Bibliometrics , Neuroinflammatory Diseases , Humans , Neuroinflammatory Diseases/immunology , Virus Diseases/immunology , Animals , Biomedical Research/trends , Viruses/immunology
4.
J Med Virol ; 96(7): e29772, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949201

ABSTRACT

The distinct composition and immune response characteristics of bats' innate and adaptive immune systems, which enable them to serve as host of numerous serious zoonotic viruses without falling ill, differ substantially from those of other mammals, it have garnered significant attention. In this article, we offer a systematic review of the names, attributes, and functions of innate and adaptive immune cells & molecules across different bat species. This includes descriptions of the differences shown by research between 71 bat species in 10 families, as well as comparisons between bats and other mammals. Studies of the immune cells & molecules of different bat species are necessary to understand the unique antiviral immunity of bats. By providing comprehensive information on these unique immune responses, it is hoped that new insights will be provided for the study of co-evolutionary dynamics between viruses and the bat immune system, as well as human antiviral immunity.


Subject(s)
Adaptive Immunity , Chiroptera , Immunity, Innate , Chiroptera/virology , Chiroptera/immunology , Animals , Humans , Viruses/immunology , Viruses/classification , Virus Diseases/immunology , Virus Diseases/virology
5.
Viruses ; 16(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39066259

ABSTRACT

Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.


Subject(s)
Interferons , Protein Biosynthesis , RNA, Viral , Virus Diseases , Virus Replication , Humans , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/genetics , Interferons/immunology , Interferons/metabolism , Interferons/genetics , RNA, Viral/genetics , Animals , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viruses/immunology , Viruses/genetics , Viruses/drug effects
6.
Front Immunol ; 15: 1395921, 2024.
Article in English | MEDLINE | ID: mdl-38966644

ABSTRACT

IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.


Subject(s)
Adaptive Immunity , Virus Diseases , Humans , Virus Diseases/immunology , Animals , Gene Expression Regulation , Interleukin-27/metabolism , Viruses/immunology , Interleukins/immunology , Interleukins/metabolism
7.
Virology ; 597: 110164, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959722

ABSTRACT

In this review, we explore how pseudotyped viruses (PVs) are being applied to the study of viruses affecting both humans and horses. For the purposes of this review, we define PVs as non-replicative viruses with the core of one virus and the surface protein(s) of another and encapsulating a reporter gene such as luciferase. These 'reporter' PVs enable receptor-mediated entry into host cells to be quantified, and thus can be applied to study the initial stages of viral replication. They can also be used to test antiviral activity of compounds and measure envelope protein-specific antibodies in neutralisation tests.


Subject(s)
Horse Diseases , Virus Diseases , Horses , Animals , Humans , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/veterinary , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/epidemiology , Viruses/immunology , Viruses/genetics , Viruses/pathogenicity , Viruses/classification , Virus Replication , Virus Internalization , Antibodies, Viral/immunology
8.
Adv Virus Res ; 119: 63-110, 2024.
Article in English | MEDLINE | ID: mdl-38897709

ABSTRACT

The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.


Subject(s)
Glycocalyx , Viruses , Glycocalyx/metabolism , Humans , Animals , Viruses/immunology , Viruses/metabolism , Polysaccharides/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology , Host-Pathogen Interactions/immunology
9.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932126

ABSTRACT

Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.


Subject(s)
Swine Diseases , Viral Vaccines , Virus Diseases , Animals , Swine , Viral Vaccines/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Virus Diseases/prevention & control , Virus Diseases/veterinary , Virus Diseases/immunology , Vaccination/veterinary , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology , Viruses/immunology , Viruses/genetics
10.
Viruses ; 16(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38932228

ABSTRACT

Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.


Subject(s)
Nanoparticles , Viral Vaccines , Humans , Nanoparticles/chemistry , Animals , Viral Vaccines/immunology , Virus Diseases/prevention & control , Virus Diseases/immunology , Viruses/immunology , Viruses/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics , Vaccines, Subunit/immunology
11.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38809906

ABSTRACT

A time-delayed virus dynamic model is proposed with general monotonic incidence, different nonlinear CTL (cytotoxic T lymphocyte) responses [CTL elimination function pyg1(z) and CTL stimulation function cyg2(z)], and immune impairment. Indeed, the different CTL responses pose challenges in obtaining the dissipativeness of the model. By constructing appropriate Lyapunov functionals with some detailed analysis techniques, the global stability results of all equilibria of the model are obtained. By the way, we point out that the partial derivative fv(x,0) is increasing (but not necessarily strictly) in x>0 for the general monotonic incidence f(x,v). However, some papers defaulted that the partial derivative was strictly increasing. Our main results show that if the basic reproduction number R0≤1, the infection-free equilibrium E0 is globally asymptotically stable (GAS); if CTL stimulation function cyg2(z)=0 for z=0 and the CTL threshold parameter R1≤1

Subject(s)
T-Lymphocytes, Cytotoxic , T-Lymphocytes, Cytotoxic/immunology , Humans , Time Factors , Viruses/immunology , Virus Diseases/immunology , Models, Immunological , Models, Biological
12.
Viruses ; 16(5)2024 05 06.
Article in English | MEDLINE | ID: mdl-38793616

ABSTRACT

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Subject(s)
Interferons , Membrane Proteins , Virus Internalization , Humans , Membrane Proteins/metabolism , Membrane Proteins/immunology , Interferons/immunology , Interferons/metabolism , Virus Internalization/drug effects , Antiviral Agents/pharmacology , Immune Evasion , Animals , Virus Diseases/immunology , Virus Diseases/virology , Viruses/immunology , Viruses/drug effects , Host-Pathogen Interactions/immunology , Signal Transduction , Antigens, Differentiation/metabolism , Antigens, Differentiation/immunology
13.
Curr Opin Virol ; 66: 101411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718574

ABSTRACT

Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.


Subject(s)
Immunity, Innate , Signal Transduction , Virus Diseases , Humans , Animals , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/metabolism , Viruses/genetics , Viruses/immunology , Protein Processing, Post-Translational , Host-Pathogen Interactions , Receptors, Pattern Recognition/metabolism , Cytokines/metabolism
14.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38714349

ABSTRACT

Respiratory pathogens can cause severe disease and even death, especially in the very young and very old. Studies investigating their prevalence often focus on individuals presenting to healthcare providers with symptoms. However, the design of prevention strategies, e.g. which target groups to vaccinate, will benefit from knowledge on the prevalence of, risk factors for and host response to these pathogens in the general population. In this study, upper respiratory samples (n = 1311) were collected cross-sectionally during winter from 11- and 24-month old children, their parents, and adults ≥60 years of age that were recruited irrespective of seeking medical care. Almost all children, approximately two-thirds of parents and a quarter of older adults tested positive for at least one pathogen, often in the absence of symptoms. Viral interference was evident for the combination of rhinovirus and respiratory syncytial virus. Attending childcare facilities and having siblings associated with increased pathogen counts in children. On average, children showed increased levels of mucosal cytokines compared to parents and especially proinflammatory molecules associated with the presence of symptoms. These findings may guide further research into transmission patterns of respiratory pathogens and assist in determining the most appropriate strategies for the prediction and prevention of disease.


Subject(s)
Cytokines , Respiratory Tract Infections , Seasons , Humans , Cross-Sectional Studies , Netherlands/epidemiology , Infant , Male , Female , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology , Prevalence , Middle Aged , Adult , Cytokines/metabolism , Aged , Child, Preschool , Aged, 80 and over , Virus Diseases/epidemiology , Virus Diseases/virology , Virus Diseases/immunology , Viruses/isolation & purification , Viruses/classification , Viruses/immunology
15.
Sci Rep ; 14(1): 10337, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710802

ABSTRACT

Infectious diseases have long been a shaping force in human history, necessitating a comprehensive understanding of their dynamics. This study introduces a co-evolution model that integrates both epidemiological and evolutionary dynamics. Utilizing a system of differential equations, the model represents the interactions among susceptible, infected, and recovered populations for both ancestral and evolved viral strains. Methodologically rigorous, the model's existence and uniqueness have been verified, and it accommodates both deterministic and stochastic cases. A myriad of graphical techniques have been employed to elucidate the model's dynamics. Beyond its theoretical contributions, this model serves as a critical instrument for public health strategy, particularly predicting future outbreaks in scenarios where viral mutations compromise existing interventions.


Subject(s)
Stochastic Processes , Humans , Immune System/virology , Evolution, Molecular , Viruses/genetics , Viruses/immunology , Biological Evolution
16.
Adv Healthc Mater ; 13(18): e2304649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598792

ABSTRACT

Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.


Subject(s)
Genetic Engineering , Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Genetic Engineering/methods , Animals , Bacteria/genetics , Bacteria/immunology , Synthetic Biology/methods , Viruses/immunology , Viruses/genetics
17.
Viruses ; 16(4)2024 04 11.
Article in English | MEDLINE | ID: mdl-38675930

ABSTRACT

Inflammation is a protective host response essential for controlling viral replication and promoting tissue repair [...].


Subject(s)
Inflammation , Virus Diseases , Inflammation/virology , Humans , Virus Diseases/immunology , Virus Diseases/virology , Animals , Viruses/immunology , Viruses/pathogenicity , Virus Replication , Host-Pathogen Interactions/immunology
18.
Viruses ; 16(4)2024 04 13.
Article in English | MEDLINE | ID: mdl-38675942

ABSTRACT

The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.


Subject(s)
Immunity, Innate , Virus Diseases , Humans , Virus Diseases/immunology , Virus Diseases/virology , Methylation , Virus Replication , Viruses/immunology , Viruses/genetics , Animals , RNA, Viral/genetics , RNA, Viral/immunology , Signal Transduction , Host-Pathogen Interactions/immunology
19.
J Med Virol ; 96(5): e29622, 2024 May.
Article in English | MEDLINE | ID: mdl-38682614

ABSTRACT

RNA capping is an essential trigger for protein translation in eukaryotic cells. Many viruses have evolved various strategies for initiating the translation of viral genes and generating progeny virions in infected cells via synthesizing cap structure or stealing the RNA cap from nascent host messenger ribonucleotide acid (mRNA). In addition to protein translation, a new understanding of the role of the RNA cap in antiviral innate immunity has advanced the field of mRNA synthesis in vitro and therapeutic applications. Recent studies on these viral RNA capping systems have revealed startlingly diverse ways and molecular machinery. A comprehensive understanding of how viruses accomplish the RNA capping in infected cells is pivotal for designing effective broad-spectrum antiviral therapies. Here we systematically review the contemporary insights into the RNA-capping mechanisms employed by viruses causing human and animal infectious diseases, while also highlighting its impact on host antiviral innate immune response. The therapeutic applications of targeting RNA capping against viral infections and the development of RNA-capping inhibitors are also summarized.


Subject(s)
Antiviral Agents , RNA Caps , RNA, Viral , Virus Diseases , Animals , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Immunity, Innate , RNA Caps/metabolism , RNA, Viral/genetics , Virus Diseases/drug therapy , Virus Diseases/immunology , Virus Replication/drug effects , Viruses/genetics , Viruses/drug effects , Viruses/immunology
20.
Future Microbiol ; 19(9): 841-856, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38648093

ABSTRACT

The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.


Bats are the most diverse mammalian order, with over 1400 species found worldwide. Studies on bats have revealed that they frequently carry and transmit multiple viruses. They are also known to recover from viral infections. Further, human interference and climatic changes in bats' native habitat have led to virus spillover events from bats to human populations, posing a serious public health risk. A deeper understanding of the coexistence of bats and viruses, as well as the mechanisms of disease transmission to humans, is required to minimize the risk of future viral outbreaks.


Subject(s)
Chiroptera , Disease Reservoirs , Chiroptera/virology , Chiroptera/immunology , Animals , Humans , Disease Reservoirs/virology , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/veterinary , Viral Zoonoses/transmission , Viral Zoonoses/virology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Viruses/immunology , Viruses/classification , Viruses/genetics , Zoonoses/virology , Zoonoses/transmission , Zoonoses/immunology
SELECTION OF CITATIONS
SEARCH DETAIL