Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.882
Filter
1.
ACS Appl Mater Interfaces ; 16(24): 30793-30809, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833412

ABSTRACT

Both bone mesenchymal stem cells (BMSCs) and their exosomes suggest promising therapeutic tools for bone regeneration. Lithium has been reported to regulate BMSC function and engineer exosomes to improve bone regeneration in patients with glucocorticoid-induced osteonecrosis of the femoral head. However, the mechanisms by which lithium promotes osteogenesis have not been elucidated. Here, we demonstrated that lithium promotes the osteogenesis of BMSCs via lithium-induced increases in the secretion of exosomal Wnt10a to activate Wnt/ß-catenin signaling, whose secretion is correlated with enhanced MARK2 activation to increase the trafficking of the Rab11a and Rab11FIP1 complexes together with exosomal Wnt10a to the plasma membrane. Then, we compared the proosteogenic effects of exosomes derived from lithium-treated or untreated BMSCs (Li-Exo or Con-Exo) both in vitro and in vivo. We found that, compared with Con-Exo, Li-Exo had superior abilities to promote the uptake and osteogenic differentiation of BMSCs. To optimize the in vivo application of these hydrogels, we fabricated Li-Exo-functionalized gelatin methacrylate (GelMA) hydrogels, which are more effective at promoting osteogenesis and bone repair than Con-Exo. Collectively, these findings demonstrate the mechanism by which lithium promotes osteogenesis and the great promise of lithium for engineering BMSCs and their exosomes for bone regeneration, warranting further exploration in clinical practice.


Subject(s)
Exosomes , Lithium , Mesenchymal Stem Cells , Osteogenesis , beta Catenin , rab GTP-Binding Proteins , Osteogenesis/drug effects , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , rab GTP-Binding Proteins/metabolism , beta Catenin/metabolism , Lithium/chemistry , Lithium/pharmacology , Wnt Proteins/metabolism , Mice , Cell Differentiation/drug effects , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , Bone Regeneration/drug effects , Humans , Male
2.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858388

ABSTRACT

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Dystrophin , Muscles , Wnt Signaling Pathway , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Dystrophin/metabolism , Dystrophin/genetics , Muscles/metabolism , Dishevelled Proteins/metabolism , Dishevelled Proteins/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Cell Membrane/metabolism , Dystrophin-Associated Protein Complex/metabolism , Dystrophin-Associated Protein Complex/genetics , Wnt Proteins/metabolism , Signal Transduction
3.
Cell Chem Biol ; 31(6): 1044-1046, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906109

ABSTRACT

Pharmacological modulation of the Wnt/ß-catenin signaling pathway holds promises for both basic research and therapeutic applications. In this issue of Cell Chemical Biology, Kschonsak et al.1 engineered knotted peptides that promote Wnt signaling by targeting ZNRF3 and serve as pharmacological tools for studying Wnt biology and supporting organoid growth.


Subject(s)
Wnt Signaling Pathway , Wnt Signaling Pathway/drug effects , Humans , Wnt Proteins/metabolism , Wnt Proteins/agonists , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , beta Catenin/metabolism , Animals , Receptors, Wnt/metabolism
4.
Commun Biol ; 7(1): 747, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902324

ABSTRACT

AMPK is a well-known energy sensor regulating cellular metabolism. Metabolic disorders such as obesity and diabetes are considered detrimental factors that reduce fecundity. Here, we show that pharmacologically induced in vitro activation (by metformin) or inhibition (by dorsomorphin) of the AMPK pathway inhibits or promotes activation of ovarian primordial follicles in cultured murine ovaries and human ovarian cortical chips. In mice, activation of primordial follicles in dorsomorphin in vitro-treated ovaries reduces AMPK activation and upregulates Wnt and FOXO genes, which, interestingly, is associated with decreased phosphorylation of ß-catenin. The dorsomorphin-treated ovaries remain of high quality, with no detectable difference in reactive oxygen species production, apoptosis or mitochondrial cytochrome c oxidase activity, suggesting safe activation. Subsequent maturation of in vitro-treated follicles, using a 3D alginate cell culture system, results in mature metaphase eggs with protruding polar bodies. These findings demonstrate that the AMPK pathway can safely regulate primordial follicles by modulating Wnt and FOXO genes, and reduce ß-catenin phosphorylation.


Subject(s)
AMP-Activated Protein Kinases , Ovarian Follicle , Pyrazoles , Pyrimidines , Animals , Female , Mice , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Humans , Up-Regulation/drug effects , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Phosphorylation/drug effects , Mice, Inbred C57BL , Metformin/pharmacology , Wnt Signaling Pathway/drug effects
5.
Oncogene ; 43(27): 2092-2103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769192

ABSTRACT

Androgen Receptor (AR) activity in prostate stroma is required to maintain prostate homeostasis. This is mediated through androgen-dependent induction and secretion of morphogenic factors that drive epithelial cell differentiation. However, stromal AR expression is lost in aggressive prostate cancer. The mechanisms leading to stromal AR loss and morphogen production are unknown. We identified TGFß1 and TNFα as tumor-secreted factors capable of suppressing AR mRNA and protein expression in prostate stromal fibroblasts. Pharmacological and RNAi approaches identified NF-κB as the major signaling pathway involved in suppressing AR expression by TNFα. In addition, p38α- and p38δ-MAPK were identified as suppressors of AR expression independent of TNFα. Two regions of the AR promoter were responsible for AR suppression through TNFα. FGF10 and Wnt16 were identified as androgen-induced morphogens, whose expression was lost upon TNFα treatment and enhanced upon p38-MAPK inhibition. Wnt16, through non-canonical Jnk signaling, was required for prostate basal epithelial cell survival. These findings indicate that stromal AR loss is mediated by secreted factors within the TME. We identified TNFα/TGFß as two possible factors, with TNFα mediating its effects through NF-κB or p38-MAPK to suppress AR mRNA transcription. This leads to loss of androgen-regulated stromal morphogens necessary to maintain normal epithelial homeostasis.


Subject(s)
NF-kappa B , Prostatic Neoplasms , Receptors, Androgen , Stromal Cells , p38 Mitogen-Activated Protein Kinases , Male , Humans , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , NF-kappa B/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Tumor Necrosis Factor-alpha/metabolism , MAP Kinase Signaling System/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Signal Transduction , Prostate/pathology , Prostate/metabolism
6.
Elife ; 132024 May 23.
Article in English | MEDLINE | ID: mdl-38780011

ABSTRACT

The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.


Subject(s)
Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , Wnt-5a Protein , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Humans , Animals , Crystallography, X-Ray , Protein Domains , Mice , Protein Conformation , Wnt Proteins/metabolism , Wnt Proteins/genetics
7.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38742434

ABSTRACT

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Subject(s)
Receptors, Notch , Somites , Animals , Mice , Somites/embryology , Somites/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Body Patterning/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Embryonic Development/genetics , Embryonic Development/physiology , Biological Clocks/physiology
8.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692274

ABSTRACT

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Subject(s)
Bone Morphogenetic Proteins , Cell Differentiation , Primitive Streak , Signal Transduction , Primitive Streak/metabolism , Primitive Streak/embryology , Bone Morphogenetic Proteins/metabolism , Humans , Signal Transduction/physiology , Animals , Mesoderm/metabolism , Mesoderm/embryology , Wnt Signaling Pathway/physiology , Wnt Proteins/metabolism , Gene Expression Regulation, Developmental , Gastrulation/physiology
9.
Gene ; 921: 148518, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38734188

ABSTRACT

BACKGROUND: Long non-coding RNAs (LncRNA) play a pivotal role in the progression of various malignancies. Despite recent identification as an oncogene associated with tumorigenesis. The precise role of LINC01605 in cervical cancer (CC) remains unclear. Therefore, the objective of this study was to investigate the influence of LINC01605 on proliferation and invasion of CC cells, while also exploring its potential underlying mechanisms. METHODS: The expression of LINC01605 in CC cell lines was analyzed using the TCGA database and qRT-PCR. Various assays, including CCK-8 and transwell analysis, were conducted on CC cells to assess the influence of LINC01605 on their proliferation, migration, and invasion capabilities. Bioinformatics and dual luciferase reporter gene assays were employed to analyze the target genes of LINC01605 and miR-149-3p. To further investigate the mechanism of action, transfection and investigation were performed using specific siRNA, miRNA mimics, or inhibitors. RESULTS: The expression of LINC01605 exhibited a significant increase in CC cell lines, and this upregulation was associated with an unfavorable prognosis. Modulating the expression of LINC01605, either by down-regulating or up-regulating it, exerted suppressive or stimulatory effects on the growth and invasion of HeLa and Siha cells. LINC01605 functioned as a competitive endogenous RNA (ceRNA) for miR-149-3p, with WNT7B being identified as a target gene of miR-149-3p. The involvement of LINC01605 in CC development is facilitated by its ability to regulate the expression of WNT7B through sequestering miR-149-3p. CONCLUSION: Our study demonstrates that LINC01605 acts as a competitive endogenous RNA in modulating the effects of WNT7B on the proliferation and invasion of CC cells by sequestering miR-149-3p. This research provides novel insights into the involvement of LINC01605 in the advancement of CC.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Wnt Proteins , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , HeLa Cells , Neoplasm Invasiveness , Prognosis , Phenotype
10.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814743

ABSTRACT

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Subject(s)
Mesoderm , Morphogenesis , Osteoblasts , Skull , Wnt Proteins , Animals , Osteoblasts/metabolism , Osteoblasts/cytology , Skull/embryology , Mice , Mesoderm/cytology , Mesoderm/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cell Polarity , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement , Cell Proliferation
11.
J Clin Invest ; 134(10)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38747285

ABSTRACT

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Subject(s)
Fibroblasts , Fibrosis , Transforming Growth Factor beta , Wnt-5a Protein , rho-Associated Kinases , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Mice, Knockout , Wnt Proteins/metabolism , Wnt Proteins/genetics , MAP Kinase Signaling System , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics
12.
Clin Transl Med ; 14(5): e1670, 2024 May.
Article in English | MEDLINE | ID: mdl-38689429

ABSTRACT

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Subject(s)
Drug Resistance, Neoplasm , Osteosarcoma , Wnt Proteins , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Humans , Drug Resistance, Neoplasm/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Animals , Mice , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Neoplasm Metastasis/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor
13.
Stem Cell Reports ; 19(5): 689-709, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701778

ABSTRACT

Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Homeodomain Proteins , Animals , Mice , Embryonic Development/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Blastocyst/metabolism , Blastocyst/cytology , Wnt Signaling Pathway , Wnt Proteins/metabolism , Tight Junctions/metabolism , Cell Nucleolus/metabolism
14.
Mol Cells ; 47(6): 100068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759887

ABSTRACT

The coordinated movement of germ layer progenitor cells reaches its peak at the dorsal side, where the Bmp signaling gradient is low, and minimum at the ventral side, where the Bmp gradient is high. This dynamic cell movement is regulated by the interplay of various signaling pathways. The noncanonical Wnt signaling cascade serves as a pivotal regulator of convergence and extension cell movement, facilitated by the activation of small GTPases such as Rho, Rab, and Rac. However, the underlying cause of limited cell movement at the ventral side remains elusive. To explore the functional role of a key regulator in constraining gastrulation cell movement at the ventral side, we investigated the Bmp4-direct target gene, sizzled (szl), to assess its potential role in inhibiting noncanonical Wnt signaling. In our current study, we demonstrated that ectopic expression of szl led to gastrulation defects in a dose-dependent manner without altering cell fate specification. Overexpression of szl resulted in decreased elongation of Activin-treated animal cap and Keller explants. Furthermore, our immunoprecipitation assay unveiled the physical interaction of Szl with noncanonical Wnt ligand proteins (Wnt5 and Wnt11). Additionally, the activation of small GTPases involved in Wnt signaling mediation (RhoA and Rac1) was diminished upon szl overexpression. In summary, our findings suggest that Bmp4 signaling negatively modulates cell movement from the ventral side of the embryo by inducing szl expression during early Xenopus gastrulation.


Subject(s)
Bone Morphogenetic Protein 4 , Cell Movement , Gastrulation , Xenopus Proteins , Xenopus laevis , Animals , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Xenopus laevis/embryology , Xenopus laevis/metabolism , Bone Morphogenetic Protein 4/metabolism , Wnt Proteins/metabolism , Ligands , Wnt Signaling Pathway
15.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682276

ABSTRACT

The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical ß-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.


Subject(s)
Blood-Brain Barrier , Brain , Neovascularization, Physiologic , Receptors, G-Protein-Coupled , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/embryology , Neovascularization, Physiologic/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Brain/metabolism , Brain/embryology , Protein Domains , Mice, Knockout , Signal Transduction , Wnt Proteins/metabolism , Wnt Proteins/genetics , Humans , Endothelial Cells/metabolism , Angiogenesis , GPI-Linked Proteins
16.
Neuroreport ; 35(8): 542-550, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38597273

ABSTRACT

Wnt signaling plays an important role in adult brain function, and its dysregulation has been implicated in the loss of neuronal homeostasis. Despite the existence of many studies on the participation of the Wnt pathway in adult neurons, its regulation in astrocytes has been scarcely explored. Several reports point to the presence of Wnt ligands in astrocytes and their possible impact on neuronal plasticity or neuronal death. We aimed to analyze the effect of the neurotransmitter glutamate and the inflammatory cytokine TNFα on the mRNA and protein levels of the canonical Wnt agonist Wnt7a and the antagonist Dkk1 in cultured astrocytes. Primary astrocyte cultures from rat cerebral cortices were exposed to glutamate or TNFα. Wnt7a and Dkk1 expression was analyzed by RT-qPCR and its protein abundance and distribution was assessed by immunofluorescence. We found high basal expression and protein levels of Wnt7a and Dkk1 in unstimulated astrocytes and overproduction of Dkk1 mRNA induced by the two stimuli. These results reveal the astrocytic source of the canonical Wnt ligands Wnt7a and Dkk1, whose levels are differentially regulated by glutamate and TNFα. Astrocytes are a significant source of Wnt ligands, the production of which can be differentially regulated under excitatory or proinflammatory conditions, thereby impacting neuronal function.


Subject(s)
Astrocytes , Glutamic Acid , Intercellular Signaling Peptides and Proteins , Proto-Oncogene Proteins , Tumor Necrosis Factor-alpha , Wnt Proteins , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Glutamic Acid/metabolism , Wnt Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , Rats , RNA, Messenger/metabolism , Rats, Wistar , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/cytology
17.
Sci Signal ; 17(832): eadf4299, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626007

ABSTRACT

Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.


Subject(s)
Zebrafish , beta Catenin , Animals , Humans , beta Catenin/metabolism , Endocytosis , ErbB Receptors/genetics , Hematopoietic Stem Cells/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
19.
J Mol Histol ; 55(3): 359-370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662168

ABSTRACT

Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), ß-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, ß-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/ß-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/ß-catenin signaling pathway, which may serve as a promising therapy target of CNV.


Subject(s)
Choroidal Neovascularization , MicroRNAs , Wnt Proteins , Wnt Signaling Pathway , Animals , Humans , Male , Rats , Apoptosis/genetics , beta Catenin/metabolism , beta Catenin/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Wnt Proteins/metabolism , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics
20.
Nature ; 628(8009): 863-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570687

ABSTRACT

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Subject(s)
Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...