Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Neurodegener ; 18(1): 97, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111016

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aß) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aß (TCRAß). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAß (TCRAß -Tregs) to reduce Aß burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS: TCRAß -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aß reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aß-tetramer staining. Adoptive transfer of TCRAß-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS: TCRAß-Tregs expressed an Aß-specific TCR. Adoptive transfer of TCRAß-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAß-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS: TCRAß-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.


Subject(s)
Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins , Disease Models, Animal , Mice, Transgenic , Presenilin-1/genetics , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory
2.
Acta Biomater ; 158: 493-509, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36581007

ABSTRACT

Effective antigen delivery facilitates antiviral vaccine success defined by effective immune protective responses against viral exposures. To improve severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen delivery, a controlled biodegradable, stable, biocompatible, and nontoxic polymeric microsphere system was developed for chemically inactivated viral proteins. SARS-CoV-2 proteins encapsulated in polymeric microspheres induced robust antiviral immunity. The viral antigen-loaded microsphere system can preclude the need for repeat administrations, highlighting its potential as an effective vaccine. STATEMENT OF SIGNIFICANCE: Successful SARS-CoV-2 vaccines were developed and quickly approved by the US Food and Drug Administration (FDA). However, each of the vaccines requires boosting as new variants arise. We posit that injectable biodegradable polymers represent a means for the sustained release of emerging viral antigens. The approach offers a means to reduce immunization frequency by predicting viral genomic variability. This strategy could lead to longer-lasting antiviral protective immunity. The current proof-of-concept multipolymer study for SARS-CoV-2 achieve these metrics.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , Microspheres , Antiviral Agents/pharmacology
3.
J Control Release ; 348: 951-965, 2022 08.
Article in English | MEDLINE | ID: mdl-35738463

ABSTRACT

Transformation of CD4+ T cell effector to regulatory (Teff to Treg) cells have been shown to attenuate disease progression by restoring immunological balance during the onset and progression of neurodegenerative diseases. In our prior studies, we defined a safe and effective pathway to restore this balance by restoring Treg numbers and function through the daily administration of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These studies were conducted as a proof-of-concept testing in Parkinson's disease (PD) preclinical models and early phase I clinical investigations. In both instances, they served to ameliorate disease associated signs and symptoms. However, despite the recorded efficacy, the cytokine's short half-life, low bioavailability, and injection site reactions proved to be limitations for any broader use. To overcome these limitations, mRNA lipid nanoparticles encoding an extended half-life albumin-GM-CSF fusion protein were developed for both mouse (Msa-GM-CSF) and rat (Rsa-GM-CSF). These formulations were tested for immunomodulatory and neuroprotective efficacy using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and human wild-type alpha-synuclein (αSyn) overexpression preclinical models of PD. A single dose of the extended half-life mouse and rat mRNA lipid nanoparticles generated measurable GM-CSF plasma cytokine levels up to four days. Increased Treg frequency and function were associated with a resting microglial phenotype, nigrostriatal neuroprotection, and restoration of brain tissue immune homeostasis. These findings were substantively beyond the recorded efficacy of daily recombinant wild-type GM-CSF with a recorded half-life of six hours. Mechanistic evaluation of neuropathological transcriptional profiles performed in the disease-affected nigral brain region demonstrated an upregulation of neuroprotective CREB and synaptogenesis signaling and neurovascular coupling pathways. These findings highlight the mRNA-encoded albumin GM-CSF fusion protein modification linked to improvements in therapeutic efficacy. The improvements achieved were associated with the medicine's increased bioavailability. Taken together, the data demonstrate that mRNA LNP encoding the extended half-life albumin-GM-CSF fusion protein can serve as a benchmark for PD immune-based therapeutics. This is especially notable for improving adherence of drug regimens in a disease-affected patient population with known tremors and gait abnormalities.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Parkinson Disease , Albumins , Animals , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Half-Life , Humans , Liposomes , Mice , Nanoparticles , Parkinson Disease/drug therapy , Parkinson Disease/genetics , RNA, Messenger , Rats , Recombinant Proteins
4.
ACS Chem Neurosci ; 13(8): 1232-1244, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35312284

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aß) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aß plaque accumulation pharmacologically was achieved, how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aß plaques, oxidative stress, inflammation, and AD signs and symptoms. In particular, CeO2 nanoparticles (CeO2NPs) induce free-radical-scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. To investigate whether CeO2NPs affect microglia neurotoxic responses, a novel formulation of europium-doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its ability to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aß1-42 exposure by increasing the cells' phagocytic and Aß degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aß endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator.


Subject(s)
Alzheimer Disease , Nanoparticles , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cerium , Europium/metabolism , Homeostasis , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/metabolism
5.
Noncoding RNA ; 8(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35076584

ABSTRACT

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3'-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.

6.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34798897

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Subject(s)
Alzheimer Disease/pathology , CD4-Positive T-Lymphocytes/pathology , Presenilin-1/genetics , Amyloid beta-Protein Precursor/genetics , Amyloidosis/pathology , Animals , Cognition Disorders/pathology , Cognition Disorders/psychology , Inflammation/genetics , Mice , Mice, Transgenic , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology
7.
J Neuroimmune Pharmacol ; 16(2): 270-288, 2021 06.
Article in English | MEDLINE | ID: mdl-33544324

ABSTRACT

Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.


Subject(s)
COVID-19 Drug Treatment , Drug Delivery Systems/trends , Extracellular Vesicles , SARS-CoV-2/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/immunology , COVID-19/metabolism , Drug Delivery Systems/methods , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/physiology , Immunologic Factors/administration & dosage , Immunologic Factors/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
8.
Nanomedicine ; 33: 102363, 2021 04.
Article in English | MEDLINE | ID: mdl-33545405

ABSTRACT

RNA interference molecules have tremendous potential for cancer therapy but are limited by insufficient potency after i.v. administration. We previously found that Chol-DsiRNA polyplexes formed between cholesterol-modified dicer-substrate siRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase the activity of Chol-DsiRNA against a stably expressed reporter mRNA in primary murine syngeneic breast tumors after daily i.v. dosing. Here, we provide a more thorough preliminary preclinical study of Chol-DsiRNA polyplexes against the therapeutically relevant target protein, STAT3. We found that Chol-DsiSTAT3 polyplexes greatly increase plasma exposure, distribution, potency, and therapeutic activity of Chol-DsiSTAT3 in primary murine syngeneic 4T1 breast tumors after i.v. administration. Furthermore, inactive Chol-DsiCTRL polyplexes are well tolerated by healthy female BALB/c mice after chronic i.v. administration at 50 mg Chol-DsiCTRL/kg over 28 days. Thus, Chol-DsiRNA polyplexes may be a good candidate for Phase I clinical trials to improve the treatment of breast cancer and other solid tumors.


Subject(s)
Breast Neoplasms/therapy , DEAD-box RNA Helicases/genetics , Polyethylene Glycols/chemistry , Polylysine/analogs & derivatives , RNA, Small Interfering/chemistry , RNAi Therapeutics/methods , Ribonuclease III/genetics , Animals , Cell Line, Tumor , Cholesterol/chemistry , Female , Gene Transfer Techniques , Humans , Mice, Inbred BALB C , Micelles , Molecular Targeted Therapy , Polylysine/chemistry , RNA Interference , STAT3 Transcription Factor/metabolism , Tissue Distribution
9.
Adv Drug Deliv Rev ; 171: 215-239, 2021 04.
Article in English | MEDLINE | ID: mdl-33428995

ABSTRACT

The SARS-CoV-2 global pandemic has seen rapid spread, disease morbidities and death associated with substantive social, economic and societal impacts. Treatments rely on re-purposed antivirals and immune modulatory agents focusing on attenuating the acute respiratory distress syndrome. No curative therapies exist. Vaccines remain the best hope for disease control and the principal global effort to end the pandemic. Herein, we summarize those developments with a focus on the role played by nanocarrier delivery.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Drug Carriers/administration & dosage , Nanocapsules/administration & dosage , SARS-CoV-2/drug effects , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Humans , SARS-CoV-2/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
10.
Biochimie ; 137: 132-138, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28288872

ABSTRACT

Differentiation of stem cells into insulin-producing cells (IPCs) suitable for therapeutic transplantation offers a desperately needed approach for the diabetic patients. Elucidation of the molecular mechanisms during the differentiation of mesenchymal stem cells (MSCs) into IPCs assists the successful production of IPCs and provides an important insight into the improvement of the role of MSCs as a therapeutic tool for diabetes mellitus (DM). The present study aimed to investigate the role of local renin-angiotensin system (RAS) on MSCs differentiation into IPCs by measuring the expression of local RAS in MSCs during the differentiation into IPCs and assessing the effect of angiotensin type 1 receptor (AT1R) blocker and angiotensin type 2 receptor (AT2R) blocker on the differentiation process. Our data showed that the differentiation of MSCs into IPCs was associated with an increase in cellular angiotensinogen, angiotensin-converting enzyme (ACE), renin, and AT2R expression and undetectable expression of AT1R. The net effect was an increase in cellular angiotensin II (Ang II) during the differentiation process. AT1R blockade allowed the differentiation of MSCs into IPCs, whereas AT2R blockade alone and blockade of both AT1R and AT2R inhibited the differentiation of MSCs into IPCs. Our data demonstrated an important role of local RAS in the regulation of MSCs differentiation into IPCs and that Ang II mainly orchestrates this role through AT2R activation.


Subject(s)
Cell Differentiation , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Mesenchymal Stem Cells/cytology , Receptor, Angiotensin, Type 2/metabolism , Renin-Angiotensin System/physiology , Angiotensin II/metabolism , Animals , Cells, Cultured , Male , Mesenchymal Stem Cells/metabolism , Peptidyl-Dipeptidase A , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...