Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 81(12): 3402-3414, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33687950

ABSTRACT

TRAIL can activate cell surface death receptors, resulting in potent tumor cell death via induction of the extrinsic apoptosis pathway. Eftozanermin alfa (ABBV-621) is a second generation TRAIL receptor agonist engineered as an IgG1-Fc mutant backbone linked to two sets of trimeric native single-chain TRAIL receptor binding domain monomers. This hexavalent agonistic fusion protein binds to the death-inducing DR4 and DR5 receptors with nanomolar affinity to drive on-target biological activity with enhanced caspase-8 aggregation and death-inducing signaling complex formation independent of FcγR-mediated cross-linking, and without clinical signs or pathologic evidence of toxicity in nonrodent species. ABBV-621 induced cell death in approximately 36% (45/126) of solid cancer cell lines in vitro at subnanomolar concentrations. An in vivo patient-derived xenograft (PDX) screen of ABBV-621 activity across 15 different tumor indications resulted in an overall response (OR) of 29% (47/162). Although DR4 (TNFSFR10A) and/or DR5 (TNFSFR10B) expression levels did not predict the level of response to ABBV-621 activity in vivo, KRAS mutations were associated with elevated TNFSFR10A and TNFSFR10B and were enriched in ABBV-621-responsive colorectal carcinoma PDX models. To build upon the OR of ABBV-621 monotherapy in colorectal cancer (45%; 10/22) and pancreatic cancer (35%; 7/20), we subsequently demonstrated that inherent resistance to ABBV-621 treatment could be overcome in combination with chemotherapeutics or with selective inhibitors of BCL-XL. In summary, these data provide a preclinical rationale for the ongoing phase 1 clinical trial (NCT03082209) evaluating the activity of ABBV-621 in patients with cancer. SIGNIFICANCE: This study describes the activity of a hexavalent TRAIL-receptor agonistic fusion protein in preclinical models of solid tumors that mechanistically distinguishes this molecular entity from other TRAIL-based therapeutics.


Subject(s)
Colorectal Neoplasms/drug therapy , Factor IX/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Pancreatic Neoplasms/drug therapy , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Mol Cancer Res ; 17(2): 409-419, 2019 02.
Article in English | MEDLINE | ID: mdl-30429212

ABSTRACT

PARP inhibitors have recently been approved as monotherapies for the treatment of recurrent ovarian cancer and metastatic BRCA-associated breast cancer, and ongoing studies are exploring additional indications and combinations with other agents. PARP inhibitors trap PARP onto damaged chromatin when combined with temozolomide and methyl methanesulfonate, but the clinical relevance of these findings remains unknown. PARP trapping has thus far been undetectable in cancer cells treated with PARP inhibitors alone. Here, we evaluate the contribution of PARP trapping to the tolerability and efficacy of PARP inhibitors in the monotherapy setting. We developed a novel implementation of the proximity ligation assay to detect chromatin-trapped PARP1 at single-cell resolution with higher sensitivity and throughput than previously reported methods. We further demonstrate that the PARP inhibitor-induced trapping appears to drive single-agent cytotoxicity in healthy human bone marrow, indicating that the toxicity of trapped PARP complexes is not restricted to cancer cells with homologous recombination deficiency. Finally, we show that PARP inhibitors with dramatically different trapping potencies exhibit comparable tumor growth inhibition at MTDs in a xenograft model of BRCA1-mutant triple-negative breast cancer. These results are consistent with emerging clinical data and suggest that the inverse relationship between trapping potency and tolerability may limit the potential therapeutic advantage of potent trapping activity. IMPLICATIONS: PARP trapping contributes to single-agent cytotoxicity of PARP inhibitors in both cancer cells and healthy bone marrow, and the therapeutic advantage of potent trapping activity appears to be limited.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Bone Marrow , Cytotoxicity, Immunologic , Female , Humans , Mice , Mice, SCID , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
3.
Eur J Pharmacol ; 815: 219-232, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28899697

ABSTRACT

Degradation of podocyte structural integrity and function are hallmarks of proteinuric chronic kidney disease. In vivo, injury of podocytes manifests itself in the form of disruption of foot process morphology and associated cytoskeletal architecture, de-differentiation, and loss of adhesion to the glomerular basement membrane. Given the critical role played by this highly specialized cell type in maintaining glomerular filtration, there is a need for improved physiologically relevant cellular models that enable detection of disease-relevant indicators of podocyte perturbation. We have addressed this need by evaluating a subclone of conditionally immortalized human podocytes through quantitative benchmarking against freshly isolated primary human podocytes. Benchmarking was performed by measuring key phenotypic parameters, expression of podocyte specific proteins and multiparametric responses to stressors that model different aspects of podocyte perturbation. We subsequently employed the subcloned cells to profile the protective activity of structurally distinct adenosine kinase inhibitors. Our results support the translatability of our cellular model and set the stage for broader screening of renoprotective compounds with a view to eventually treat proteinuric kidney disease.


Subject(s)
Cytoprotection/drug effects , Podocytes/drug effects , Renal Insufficiency, Chronic/pathology , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Phenotype
4.
Mol Cancer Ther ; 16(7): 1236-1245, 2017 07.
Article in English | MEDLINE | ID: mdl-28468779

ABSTRACT

Cancer cells are highly reliant on NAD+-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme. Here, we identified two novel types of NAM-competitive NAMPT inhibitors, only one of which contains a modifiable, aromatic nitrogen that could be a phosphoribosyl acceptor. Both types of compound effectively deplete cellular NAD+, and subsequently ATP, and produce cell death when NAMPT is inhibited in cultured cells for more than 48 hours. Careful characterization of the kinetics of NAMPT inhibition in vivo allowed us to optimize dosing to produce sufficient NAD+ depletion over time that resulted in efficacy in an HCT116 xenograft model. Our data demonstrate that direct phosphoribosylation of competitive inhibitors by the NAMPT enzyme is not required for potent in vitro cellular activity or in vivo antitumor efficacy. Mol Cancer Ther; 16(7); 1236-45. ©2017 AACR.


Subject(s)
Colorectal Neoplasms/drug therapy , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cytokines/genetics , DNA Repair/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Xenograft Model Antitumor Assays
5.
Eur J Pharmacol ; 788: 1-11, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27288879

ABSTRACT

Adenosine (ADO) is an important regulatory purine nucleoside that accumulates at sites of inflammation and tissue injury including in diseases associated with renal pathology. Endogenous levels of ADO may be increased by inhibiting the ADO-metabolizing enzyme, ADO kinase (AK). AK inhibitors have demonstrated protection in rodent models of diabetic nephropathy. To further investigate AK inhibition as a potential mechanism for renal protection, A-306989, a potent non-nucleoside AK inhibitor, was examined in both in vitro and in vivo assays of renal injury. A-306989 prevented podocyte damage (disruption of actin cytoskeleton) and increased podocyte survival following puromycin aminonucleoside (PAN) application in both mouse and human conditionally immortalized podocytes. Prophylactic oral administration of A-306989 (1.5, 5 and 15mg/kg) reduced proteinuria in a dose-dependent manner and repressed pro-inflammatory/fibrotic gene up-regulation; A-306989 was also efficacious when administered two days following the PAN-insult. A-306989 (10 and 30mg/kg) also significantly reduced proteinuria and macrophage infiltration in a rat model of glomerulonephritis. Finally, A-306989 (15 and 50mg/kg) reduced the expression levels of pro-inflammatory/fibrotic genes, and reduced macrophage infiltration (50mg/kg), but did not affect the deposition of interstitial collagen in fibrotic kidneys from mice with unilateral ureter obstruction. A-306989 also had beneficial actions on "quality of life" measures including improving body weight loss. Thus, these data indicate that enhancement of endogenous ADO levels by A-306989 can positively modulate renal pathology and mimic some of the previously reported beneficial actions of ADO A2A receptor agonists.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Basement Membrane/diagnostic imaging , Cytoprotection/drug effects , Kidney/cytology , Kidney/injuries , Podocytes/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Fibrosis , Kidney/drug effects , Kidney/pathology , Male , Mice , Podocytes/cytology , Podocytes/metabolism , Puromycin Aminonucleoside/toxicity , Rats
6.
J Biomol Screen ; 17(8): 1005-17, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22706350

ABSTRACT

Efficient elucidation of the biological mechanism of action of novel compounds remains a major bottleneck in the drug discovery process. To address this need in the area of oncology, we report the development of a multiparametric high-content screening assay panel at the level of single cells to dramatically accelerate understanding the mechanism of action of cell growth-inhibiting compounds on a large scale. Our approach is based on measuring 10 established end points associated with mitochondrial apoptosis, cell cycle disruption, DNA damage, and cellular morphological changes in the same experiment, across three multiparametric assays. The data from all of the measurements taken together are expected to help increase our current understanding of target protein functions, constrain the list of possible targets for compounds identified using phenotypic screens, and identify off-target effects. We have also developed novel data visualization and phenotypic classification approaches for detailed interpretation of individual compound effects and navigation of large collections of multiparametric cellular responses. We expect this general approach to be valuable for drug discovery across multiple therapeutic areas.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochromes c/metabolism , DNA Damage/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Mitochondria/drug effects
7.
J Biomol Screen ; 13(6): 527-37, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18566484

ABSTRACT

Prioritization of compounds based on human hepatotoxicity potential is currently a key unmet need in drug discovery, as it can become a major problem for several lead compounds in later stages of the drug discovery pipeline. The authors report the validation and implementation of a high-content multiparametric cytotoxicity assay based on simultaneous measurement of 8 key cell health indicators associated with nuclear morphology, plasma membrane integrity, mitochondrial function, and cell proliferation. Compounds are prioritized by (a) computing an in vitro safety margin using the minimum cytotoxic concentration (IC(20)) across all 8 indicators and cell-based efficacy data and (b) using the minimal cytotoxic concentration alone to take into account concentration of drug in tissues. Feasibility data using selected compounds, including quinolone antibiotics, thiazolidinediones, and statins, suggest the viability of this approach. To increase overall throughput of compound prioritization, the authors have identified the higher throughput, plate reader-based CyQUANT assay that is similar to the high-content screening (HCS) assay in sensitivity of measuring inhibition of cell proliferation. It is expected that the phenotypic output from the multiparametric HCS assay in combination with other highly sensitive approaches, such as microarray-based expression analysis of toxic signatures, will contribute to a better understanding and predictivity of human hepatotoxicity potential.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hepatocytes/drug effects , Toxicity Tests/methods , Xenobiotics/toxicity , Biological Assay , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug-Related Side Effects and Adverse Reactions/classification , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inhibitory Concentration 50 , Liver Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Predictive Value of Tests , Reproducibility of Results , Xenobiotics/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...