Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Prosthodont ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594924

ABSTRACT

PURPOSE: Bioceramic coatings have been shown to promote bone repair, which aids in the early integration of implants. This study aimed to evaluate the influence of air abrasion with a bioceramic abrasive on the surface characteristics of different implant materials and surfaces. The dissolution of the applied treatment from the surfaces over 3 weeks was also assessed. MATERIALS AND METHODS: Discs of three alloys used for dental implants were studied and compared: two types of commercially pure titanium (CpTi)/ (CpTi SLActive) and titanium-zirconia (TiZr). The tested surfaces were: CpTi control (CpC), sandblasted (SB), sandblasted and acid-etched (SBE), and CpTi SLActive®, (TiZr) Roxolid®. Three discs from each group underwent air abrasion with apatite bioceramic powders, 95% hydroxyapatite (HA)/5% calcium oxide (CaO), and 90% hydroxyapatite (HA)/10% calcium oxide (CaO). The treated discs were surface characterized by optical profilometry to obtain surface roughness, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to compare element weight percentages of titanium, calcium, and phosphate. Dissolution was assessed using inductively coupled plasma optic emission spectrometry (ICP-OES). RESULTS: Bioceramic powders were deposited on all tested surfaces leading to changes in surface characteristics. The only statistically significant differences between the material groups for surface roughness were found with 95% HA/5% CaO powder in the Sp and Rp parameters (p = 0.03 and 0.04, respectively). There were no significant differences in the Ca and P wt% between all groups and powders 95% HA/5% CaO and 90% HA/10% CaO (p = 0.14, 0.18, and p = 0.15, 0.12, respectively). A non-uniform dispersion of the treatment on the surface layer was visible on all treated surfaces. The bioceramic powder continued to dissolute from the tested surfaces for 3 weeks. CONCLUSION: Bioceramic abrasion modifies implant surface characteristics, although the change in surface characteristics resulting from such treatment was not influenced by the implant material or surface treatment. Air abrasion with hydroxyapatite and calcium oxide bioceramics leaves powder deposits on the treated implant surfaces that could potentially influence the healing of implants affected by peri-implantitis.

2.
BMC Oral Health ; 23(1): 273, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165353

ABSTRACT

BACKGROUND: Surgical guides restrict the flow of cooling agent to osteotomy site, which will lead to a temperature rise that provokes tissue injury. Few studies compared differences in the temperature changes between non-limiting 'conventional' and limiting 'guided' surgical guides during implant site preparation. The objective of this study was to investigate the difference in temperature changes during bone drilling for implant placement using non-limiting and limiting surgical guides at cortical and cancellous bone levels. METHODS: Forty-four bovine rib samples were used for implant bed preparation in this study with a minimum thickness of 11 mm was chosen for the ribs. The bone was stored in a freezer at 10 °C until it was used. On the day of the study, the bone was defrosted and soaked in water at 21 °C for three hours before embarking on drilling to make sure each sample was at the same temperature when tested. Forty-four bone specimens were prepared and randomly allocated to receive either a limiting or a non-limiting surgical guides (22 for each group). The osteotomy site was prepared by one operator following the manufacturer's instructions, using limiting and non-limiting surgical guides. Temperature changes were recorded during implant bed preparation using thermocouples that fit into 7 mm-horizontal channels at two different depths (Coronally) and (Apically) at 1 mm distance from the osteotomy site. The data were tested for homogeneity of variances using Levene's test, then data were analyzed using an Independent sample t-test and the significance level was set at P ≤ 0.05. RESULTS: The mean temperature rise for all samples was 0.55 °C. The mean temperature rises for the limiting and non-limiting surgical guides were 0.80 °C and 0.33 °C respectively. There was a statistically significant difference in temperature rise between the limiting and non-limiting surgical guides (P = 0.008). In relation to position of temperature recording (coronal vs. apical), there was no significant difference (P > 0.05). No significant difference was noted between the two groups at cancellous bone level (P = 0.68), but the difference was significant at cortical bone level (P = 0.036). CONCLUSION: Limiting surgical guides showed higher readings than non-limiting. However, for both techniques, temperature rise was not significant clinically and within a safe range.


Subject(s)
Dental Implants , Hot Temperature , Animals , Cattle , Dental Implantation, Endosseous , Ribs/surgery , Temperature
3.
Article in English | MEDLINE | ID: mdl-36833718

ABSTRACT

One of the most common oral diseases affecting people wearing dentures is chronic atrophic candidiasis or denture stomatitis (DS). The aim of the paper is to provide an update on the pathogenesis, presentation, and management of DS in general dental practice settings. A comprehensive review of the literature published in the last ten years was undertaken using multiple databases, including PubMed via MEDLINE, EMBASE, and Scopus. The eligible articles were analyzed to identify evidence-based strategies for the management of DS. Despite its multifactorial nature, the leading cause of DS is the development of oral Candida albicans biofilm, which is facilitated by poor oral and denture hygiene, long-term denture wear, ill-fitting dentures, and the porosity of the acrylic resin in the dentures. DS affects between 17 and 75% of the population wearing dentures, with a slight predominance in elderly females. The mucosal denture surfaces and posterior tongue are the common sites of DS, and the affected areas exhibit erythema, the swelling of the palatal mucosa and edema. Oral and denture hygiene protocols, adjusting or re-fabricating poorly adapting dentures, smoking cessation, avoiding nocturnal denture wear, and the administration of topical or systemic antifungals are the mainstay of management. Alternate treatments such as microwave disinfection, phytomedicine, photodynamic therapy, and incorporation of antifungals and nanoparticles into denture resins are being evaluated for the treatment of DS but require further evidence before routine use in clinical practice. In summary, DS is the most common oral inflammatory lesion experienced by denture wearers. Most patients with DS can be managed in general dental practice settings. Effective management by general dental practitioners may be supported by a thorough understanding of the pathogenesis, the recognition of the clinical presentation, and an awareness of contemporary treatment strategies.


Subject(s)
Candidiasis, Oral , Stomatitis, Denture , Stomatitis , Female , Humans , Aged , Stomatitis, Denture/epidemiology , Stomatitis, Denture/etiology , Stomatitis, Denture/pathology , Dentures/adverse effects , Antifungal Agents , Dentists , Professional Role , Candidiasis, Oral/complications , Candida albicans
SELECTION OF CITATIONS
SEARCH DETAIL
...