Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Cancers (Basel) ; 15(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37174052

ABSTRACT

The process of epithelial-mesenchymal transition (EMT) involves the phenotypic transformation of cells from epithelial to mesenchymal status. The cells exhibiting EMT contain features of cancer stem cells (CSC), and the dual processes are responsible for progressive cancers. Activation of hypoxia-inducible factors (HIF) is fundamental to the pathogenesis of clear cell renal cell carcinoma (ccRCC), and their role in promoting EMT and CSCs is crucial for ccRCC tumour cell survival, disease progression, and metastatic spread. In this study, we explored the status of HIF genes and their downstream targets, EMT and CSC markers, by immunohistochemistry on in-house accrued ccRCC biopsies and adjacent non-tumorous tissues from patients undergoing partial or radical nephrectomy. In combination, we comprehensively analysed the expression of HIF genes and its downstream EMT and CSC-associated targets relevant to ccRCC by using publicly available datasets, the cancer genome atlas (TCGA) and the clinical proteome tumour analysis consortium (CPTAC). The aim was to search for novel biological prognostic markers that can stratify high-risk patients likely to experience metastatic disease. Using the above two approaches, we report the development of novel gene signatures that may help to identify patients at a high risk of developing metastatic and progressive disease.

2.
J Transl Med ; 20(1): 556, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463238

ABSTRACT

BACKGROUND: Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics. This was validated in the platinum resistant versus sensitive parental cell lines, as well as platinum resistant versus sensitive human ovarian cancer patient samples. The prognostic significance of the different proteomics-identified marker proteins in prognosis prediction on survival as well as their correlative association and influence on immune cell infiltration was determined by public domain data bases. METHODS: We explored the proteomic differences between carboplatin-sensitive OVCAR5 cells (parental) and their carboplatin-resistant counterpart, OVCAR5 CBPR cells. qPCR and western blots were performed to validate differentially expressed proteins at the mRNA and protein levels, respectively. Association of the identified proteins with epithelial-mesenchymal transition (EMT) prompted the investigation of cell motility. Cellular bioenergetics and proliferation were studied to delineate any biological adaptations that facilitate cancer progression. Expression of differentially expressed proteins was assessed in ovarian tumors obtained from platinum-sensitive (n = 15) versus platinum-resistant patients (n = 10), as well as matching tumors from patients at initial diagnosis and following relapse (n = 4). Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) databases were used to determine the prognostic significance and influence of the different proteomics-identified proteins on immune cell infiltration in the tumor microenvironment (TME). RESULTS: Our proteomics study identified 2422 proteins in both cell lines. Of these, 18 proteins were upregulated and 14 were downregulated by ≥ twofold (p < 0.05) in OVCAR5 CBPR cells. Gene ontology enrichment analysis amongst upregulated proteins revealed an overrepresentation of biological processes consistent with EMT in the resistant cell line. Enhanced mRNA and/or protein expression of the identified EMT modulators including ITGA2, TGFBI, AKR1B1, ITGAV, ITGA1, GFPT2, FLNA and G6PD were confirmed in OVCAR5 CBPR cells compared to parental OVCAR5 cell line. Consistent with the altered EMT profile, the OVCAR5 CBPR cells demonstrated enhanced migration and reduced proliferation, glycolysis, and oxidative phosphorylation. The upregulation of G6PD, AKR1B1, ITGAV, and TGFß1 in OVCAR5 CBPR cells was also identified in the tumors of platinum-resistant compared to platinum-sensitive high grade serous ovarian cancer (HGSOC) patients. Matching tumors of relapsed versus newly diagnosed HGSOC patients also showed enhanced expression of AKR1B1, ITGAV, TGFß1 and G6PD protein in relapsed tumors. Among the identified proteins, significant enhanced expression of GFPT2, FLNA, TGFBI (CDGG1), ITGA2 predicted unfavorable prognosis in ovarian cancer patients. Further analysis suggested that the expression of TGFBI to correlate positively with the expression of identified and validated proteins such as GFPT2, FLNA, G6PD, ITGAV, ITGA1 and ITGA2; and with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells in the TME. CONCLUSIONS: Our research demonstrates proteomic-based discovery of novel EMT-related markers with an altered metabolic profile in platinum-resistant versus sensitive ovarian cancer cell lines. The study also confirms the expression of selected identified markers in the tumors of platinum-resistant versus sensitive, and in matching relapsed versus newly diagnosed HGSOC patients. The study provides insights into the metabolic adaptation of EMT-induced carboplatin resistant cells that confers on them reduced proliferation to provide effective migratory advantage; and the role of some of these identified proteins in ovarian cancer prognosis. These observations warrant further investigation of these novel target proteins in platinum-resistant patients.


Subject(s)
Carboplatin , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Ovarian Neoplasms , Female , Humans , Aldehyde Reductase , Carboplatin/metabolism , Carcinoma, Ovarian Epithelial/genetics , CD8-Positive T-Lymphocytes , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Platinum , Proteomics , RNA, Messenger , Tumor Microenvironment , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology
3.
Cancer Cell Int ; 22(1): 422, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36585738

ABSTRACT

BACKGROUND: The endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2), through its homeostatic action on certain metalloproteinases, plays a vital role in remodelling extracellular matrix (ECM) to facilitate cancer progression. This study investigated the role of TIMP-2 in an ovarian cancer cell line in which the expression of TIMP-2 was reduced by either siRNA or CRISPR/Cas9. METHODS: OVCAR5 cells were transiently and stably transfected with either single or pooled TIMP-2 siRNAs (T2-KD cells) or by CRISPR/Cas9 under the influence of two distinct guide RNAs (gRNA1 and gRNA2 cell lines). The expression of different genes was analysed at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence (IF) and western blot. Proliferation of cells was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay or staining with Ki67. Cell migration/invasion was determined by xCELLigence. Cell growth in vitro was determined by 3D spheroid cultures and in vivo by a mouse xenograft model. RESULTS: Approximately 70-90% knock down of TIMP-2 expression were confirmed in T2-KD, gRNA1 and gRNA2 OVCAR5 ovarian cancer cells at the protein level. T2-KD, gRNA1 and gRNA2 cells exhibited a significant downregulation of MMP-2 expression, but concurrently a significant upregulation in the expression of membrane bound MMP-14 compared to control and parental cells. Enhanced proliferation and invasion were exhibited in all TIMP-2 knocked down cells but differences in sensitivity to paclitaxel (PTX) treatment were observed, with T2-KD cells and gRNA2 cell line being sensitive, while the gRNA1 cell line was resistant to PTX treatment. In addition, significant differences in the growth of gRNA1 and gRNA2 cell lines were observed in in vitro 3D cultures as well as in an in vivo mouse xenograft model. CONCLUSIONS: Our results suggest that the inhibition of TIMP-2 by siRNA and CRISPR/Cas-9 modulate the expression of MMP-2 and MMP-14 and reprogram ovarian cancer cells to facilitate proliferation and invasion. Distinct disparities in in vitro chemosensitivity and growth in 3D culture, and differences in tumour burden and invasion to proximal organs in a mouse model imply that selective suppression of TIMP-2 expression by siRNA or CRISPR/Cas-9 alters important aspects of metastasis and chemosensitivity in ovarian cancer.

4.
Front Med (Lausanne) ; 9: 766869, 2022.
Article in English | MEDLINE | ID: mdl-35775004

ABSTRACT

Renal cell cancer (RCC) is a heterogeneous tumor that shows both intra- and inter-heterogeneity. Heterogeneity is displayed not only in different patients but also among RCC cells in the same tumor, which makes treatment difficult because of varying degrees of responses generated in RCC heterogeneous tumor cells even with targeted treatment. In that context, precision medicine (PM), in terms of individualized treatment catered for a specific patient or groups of patients, can shift the paradigm of treatment in the clinical management of RCC. Recent progress in the biochemical, molecular, and histological characteristics of RCC has thrown light on many deregulated pathways involved in the pathogenesis of RCC. As PM-based therapies are rapidly evolving and few are already in current clinical practice in oncology, one can expect that PM will expand its way toward the robust treatment of patients with RCC. This article provides a comprehensive background on recent strategies and breakthroughs of PM in oncology and provides an overview of the potential applicability of PM in RCC. The article also highlights the drawbacks of PM and provides a holistic approach that goes beyond the involvement of clinicians and encompasses appropriate legislative and administrative care imparted by the healthcare system and insurance providers. It is anticipated that combined efforts from all sectors involved will make PM accessible to RCC and other patients with cancer, making a tremendous positive leap on individualized treatment strategies. This will subsequently enhance the quality of life of patients.

5.
J Exp Clin Cancer Res ; 40(1): 186, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34099013

ABSTRACT

Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Disease-Free Survival , Drug Resistance, Neoplasm/genetics , Immune Checkpoint Inhibitors/adverse effects , Neoplasm Metastasis , Protein Kinase Inhibitors/adverse effects , Protein-Tyrosine Kinases/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors
6.
Cell Commun Signal ; 19(1): 55, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001250

ABSTRACT

The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. Video Abstract.


Subject(s)
Disease Progression , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Plakins/metabolism , Animals , Female , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Plakins/chemistry
7.
Front Oncol ; 11: 796588, 2021.
Article in English | MEDLINE | ID: mdl-35047406

ABSTRACT

BACKGROUND: The tissue inhibitors of metalloproteinase (TIMPs) and their associated metalloproteinase (MMPs) are essential regulators of tissue homeostasis and are essential for cancer progression. This study analyzed the expression of TIMP-1,-2,-3 and the associated MMPs (MMP-2,-9,-11,-14) in different Stages, Grades and World Health Organization (WHO) classifications of serous ovarian tumors, ascites, ascites-derived cells from chemo-naïve (CN) and relapsed (CR) patients, and in ovarian cancer cell lines. The status of TIMPs and associated MMPs in response to chemotherapy treatment was assessed in cancer cell lines; TCGA data was interrogated to gauge TIMPs and associated MMPs as prognostic and platinum-response indicators. METHODS: The levels of TIMP-1, -2 and -3 were assessed by immunohistochemistry. The mRNA expression of TIMPs and MMPs was quantified by real time PCR (qRT-PCR). The chemosensitivity (IC50 values) to Cisplatin or Paclitaxel in cell lines was evaluated by MTT assay. The levels of TIMPs in ascites and cell lysates were analyzed by an ELISA assay. RESULTS: The expression of TIMP-2 was significantly upregulated in Type 2 compared to Type 1 tumors and normal/benign ovarian tissues. TIMP-3 expression was significantly enhanced in Stage III, Grade 3 and Type 2 tumors compared to normal/benign ovarian tissues. The mRNA expression of MMP-9,-11 and -14 was significantly upregulated in Stage IV compared to normal/benign ovarian tissues. The expression of TIMP-1 was highest, followed by TIMP-2 and then TIMP-3 in CN ascites. At the cellular level, TIMP-2 mRNA expression was significantly higher in CN compared to CR epithelial cells in patients. The expression of TIMP-1 and -2, MMPs and cancer stem cells (CSCs) were upregulated in response to chemotherapy treatments in cancer cell lines. Interrogation of the TCGA dataset suggests shifts in platinum responses in patients consistent with genetic alterations in TIMP-2, -3 and MMP-2, -11 genes in tumors; and decreased overall survival (OS) and progression-free survival (PFS) in patients with altered MMP-14 genes. CONCLUSIONS: TIMPs and related MMPs are differentially expressed in serous ovarian tumors, ascites, ascites-derived cells and ovarian cancer cell lines. Chemotherapy treatment modulates expression of TIMPs and MMPs in association with increased expression of genes related to cancer stem cells.

8.
BMC Cancer ; 20(1): 960, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023532

ABSTRACT

BACKGROUND: The metzincin family of metalloproteinases and the tissue inhibitors of metalloproteinases (TIMPs) are essential proteins required for biological processes during cancer progression. This study aimed to determine the role of TIMP-2 in ovarian cancer progression and chemoresistance by reducing TIMP-2 expression in vitro in Fallopian tube secretory epithelial (FT282) and ovarian cancer (JHOS2 and OVCAR4) cell lines. METHODS: FT282, JHOS2 and OVCAR4 cells were transiently transfected with either single or pooled TIMP-2 siRNAs. The expression of different genes after TIMP-2 knock down (T2-KD) or in response to chemotherapy was determined at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence. Sensitivity of the cell lines in response to chemotherapy after TIMP-2 knock down was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell invasion in response to TIMP-2 knockdown was determined by xCELLigence. RESULTS: Sixty to 90 % knock down of TIMP-2 expression was confirmed in FT282, OVCAR4 and JHOS2 cell lines at the mRNA and protein levels. TIMP-2 knock down did not change the mRNA expression of TIMP-1 or TIMP-3. However, a significant downregulation of MMP-2 in T2-KD cells occurred at both the protein and activation levels, compared to Control (Cont; scrambled siRNA) and Parental cells (P, transfection reagent only). In contrast, membrane bound MT1-MMP protein levels were significantly upregulated in T2-KD compared to Cont and P cells. T2-KD cells exhibited enhanced proliferation and increased sensitivity to cisplatin and paclitaxel treatments. Enhanced invasion was observed in the T2-KD-JOSH2 and OVCAR4 cells but not in T2-KD-FT282 cells. Treatment with cisplatin or paclitaxel significantly elevated the expression of TIMP-2 in Cont cells but not in T2-KD cells, consistent with significantly elevated expression of chemoresistance and CSC markers and activation of STAT3. Furthermore, a potent inhibitor of STAT3 activation, Momelotinib, suppressed chemotherapy-induced activation of P-STAT3 in OVCAR4 cells with concomitant reductions in the expression of chemoresistance genes and CSC markers. CONCLUSIONS: The above results suggest that TIMP-2 may have a novel role in ovarian cancer proliferation, invasion and chemoresistance.


Subject(s)
Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/physiology , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Drug Resistance, Neoplasm , Female , Humans , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Transfection
9.
Cells ; 9(3)2020 03 14.
Article in English | MEDLINE | ID: mdl-32183385

ABSTRACT

Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.


Subject(s)
Carcinoma, Ovarian Epithelial/therapy , Mitochondrial Proteins/metabolism , Stem Cells/metabolism , Adult , Animals , Cell Line, Tumor , Female , Humans , Mice , Mitochondrial Precursor Protein Import Complex Proteins
10.
Bioengineering (Basel) ; 7(1)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069949

ABSTRACT

Atrial fibrillation, often called AF is considered to be the most common type of cardiac arrhythmia, which is a major healthcare challenge. Early detection of AF and the appropriate treatment is crucial if the symptoms seem to be consistent and persistent. This research work focused on the development of a heart monitoring system which could be considered as a feasible solution in early detection of potential AF in real time. The objective was to bridge the gap in the market for a low-cost, at home use, noninvasive heart health monitoring system specifically designed to periodically monitor heart health in subjects with AF disorder concerns. The main characteristic of AF disorder is the considerably higher heartbeat and the varying period between observed R waves in electrocardiogram (ECG) signals. This proposed research was conducted to develop a low cost and easy to use device that measures and analyzes the heartbeat variations, varying time period between successive R peaks of the ECG signal and compares the result with the normal heart rate and RR intervals. Upon exceeding the threshold values, this device creates an alert to notify about the possible AF detection. The prototype for this research consisted of a Bitalino ECG sensor and electrodes, an Arduino microcontroller, and a simple circuit. The data was acquired and analyzed using the Arduino software in real time. The prototype was used to analyze healthy ECG data and using the MIT-BIH database the real AF patient data was analyzed, and reasonable threshold values were found, which yielded a reasonable success rate of AF detection.

11.
ACS Appl Bio Mater ; 3(7): 4198-4207, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-35025421

ABSTRACT

Cubosomes with an internal three-dimensional (3D) periodic and porous particulate nanostructure have emerged as a promising drug delivery system for hydrophobic small molecules as well as large biomolecules over the past several decades. Limited understanding of their safety profiles and biodistribution, however, hinders clinical translation. This study used monoolein-based cubosomes stabilized by Pluronic F127 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)] polymers to encapsulate paclitaxel (PTX) as a model drug and investigated the in vitro cytotoxicity, in vivo acute response, and whole body biodistribution of the developed nanoparticles. Comparison of the PTX and nanoparticle cytotoxicity in two-dimensional and 3D spheroid cell models revealed distinct differences, with the cells in the 3D model found to be more tolerable to unloaded PTX as well as the PTX-loaded nanoparticle form. One-time intraperitoneal (i.p.) injection of unloaded cubosomes were generally well tolerated up to 400 mg/kg. Using the A431 skin cancer xenograft model, in vivo imaging studies showed the preferential accumulation of PTX-loaded cubosomes at the tumor sites following i.p. injection. Lastly, average tumor size was reduced by approximately 50% in the nanoparticle-based treatment group compared to the unloaded PTX drug group. The study provides significant information on the biological response of cubosomes and highlights their potential as a versatile drug delivery platform for safe and effective delivery of chemotherapeutic drugs.

12.
Cancers (Basel) ; 11(2)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791462

ABSTRACT

Approximately seventy percent of ovarian cancer patients succumb to the disease within the first 5 years of diagnosis, even after successful surgery and effective chemotherapy treatment. A small subset of chemotherapy resistant cancer stem cells (CSCs) cause relapse of ovarian cancers. This study investigated the association between paclitaxel-mediated Src activation (p-Src) and CSC populations in driving ovarian cancer progression. We demonstrate that patients with high-stage serous ovarian carcinomas have significantly elevated levels of p-Src, compared to patient with low-stage and benign ovarian tumours. Additionally, p-Src was significantly enhanced in ascites-derived tumour cells obtained from recurrent patients, compared to chemonaïve patients. Paclitaxel treatment increased Src activation in ovarian cancer cells, causing enrichment of CSC marker expression in the surviving cells in vitro and in xenografts of nude mice. Dasatinib in combination with paclitaxel significantly suppressed p-Src in ovarian cancer cell lines and xenografts but had no effect on the expression of CSC markers. However, combination of paclitaxel and Dasatinib showed lower trend in invasion in liver and pancreas, compared to paclitaxel-only treatment. The tumours treated with combination therapy also had significantly lower infiltration of mononuclear cells. Robust recurrent tumour growth was observed in all mice groups after termination of treatments. The above results suggest that Dasatinib-mediated inhibition of p-Src may not be crucial for paclitaxel-induced CSC-mediated recurrence in ovarian cancer.

13.
Semin Cancer Biol ; 53: 265-281, 2018 12.
Article in English | MEDLINE | ID: mdl-30317036

ABSTRACT

Cancer stem cells (CSCs) are a sub-population of tumour cells, which are responsible to drive tumour growth, metastasis and therapy resistance. It has recently been proposed that enhanced glucose metabolism and immune evasion by tumour cells are linked, and are modulated by the changing tumour microenvironment (TME) that creates a competition for nutrient consumption between tumour and different sub-types of cells attracted to the TME. To facilitate efficient nutrient distribution, oncogene-induced inflammatory milieu in the tumours facilitate adaptive metabolic changes in the surrounding non-malignant cells to secrete metabolites that are used as alternative nutrient sources by the tumours to sustain its increasing energy needs for growth and anabolic functions. This scenario also affects CSCs residing at the primary or metastatic niches. This review summarises recent advances in our understanding of the metabolic phenotypes of cancer cells and CSCs and how these processes are affected by the TME. We also discuss how the evolving TME modulates tumour cells and CSCs in cancer progression. Using previously described proteomic and genomic platforms, ovarian cancer cell lines and a mouse xenograft model we highlight the existence of metabolic and immune regulatory signatures in chemoresistant ovarian CSCs, and discuss how these processes may affect recurrence in ovarian tumours. We propose that progress in cancer control and eradication may depend not only on the elimination of highly chemoresistant CSCs, but also in designing novel strategies which would intervene with the tumour-promoting TME factors.


Subject(s)
Energy Metabolism/immunology , Neoplasms/immunology , Neoplastic Stem Cells/immunology , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/immunology , Energy Metabolism/drug effects , Female , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Tumor Microenvironment/drug effects
14.
ACS Appl Mater Interfaces ; 10(30): 25174-25185, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29963859

ABSTRACT

Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.


Subject(s)
Nanoparticles , Animals , Antineoplastic Agents, Phytogenic , Cell Line, Tumor , Drug Carriers , Drug Delivery Systems , Female , Humans , Lipids , Mice , Ovarian Neoplasms , Paclitaxel , Polyethylene Glycols
15.
Oncotarget ; 9(24): 16599-16618, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29682172

ABSTRACT

Despite a good initial response to front-line chemotherapy, majority of the ovarian cancer patients relapse with consecutive phases of recurrences; and nearly 60% die within 5 years due to the development of a chemoresistant disease. This study investigated whether inhibition of the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway by momelotinib is sufficient in suppressing tumor burden and prolonging the disease-free survival period in a mouse model of ovarian cancer. We demonstrate that paclitaxel treatment enhanced JAK2/STAT3 activation which resulted in the enrichment of cancer stem cell (CSC)-like phenotype in the surviving ovarian cancer cells in vitro and in in vivo mouse xenografts. Combined treatment with paclitaxel and momelotinib inhibited paclitaxel-induced JAK2/STAT3 activation and CSC-like development in mice xenografts, and consequently reduced the tumor burden significantly greater than that achieved by paclitaxel-treatment alone. However, robust recurrent tumor growth with enhanced JAK2/STAT3 activation and CSC-like phenotype was observed in all mice groups after termination of treatments, but was delayed significantly in the paclitaxel and momelotinib treated group compared to other treatment groups. Daily oral gavage of momelotinib after termination of paclitaxel treatment showed sustained inhibition of tumor growth and a prolonged disease-free survival period in 50% of the mice. The other 50% of mice that developed tumors with ongoing momelotinib treatment also showed significantly increased survival benefit and a smaller tumor burden. These preliminary findings may have a profound clinical impact in developing an effective momelotinib-based 'maintenance-therapy' in ovarian cancer patients' post-chemotherapy treatment.

16.
Int J Mol Sci ; 19(2)2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29393911

ABSTRACT

Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.


Subject(s)
ADAMTS Proteins/genetics , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinases/genetics , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/genetics , Tissue Inhibitor of Metalloproteinases/genetics , ADAMTS Proteins/metabolism , Antineoplastic Agents/pharmacology , Disease Progression , Drug Resistance, Neoplasm/genetics , Female , Humans , Matrix Metalloproteinases/metabolism , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Signal Transduction , Survival Analysis , Tissue Inhibitor of Metalloproteinases/metabolism
17.
Methods Mol Biol ; 1619: 263-301, 2017.
Article in English | MEDLINE | ID: mdl-28674892

ABSTRACT

DotScan antibody microarrays were initially developed for the extensive surface profiling of live leukemia and lymphoma cells. DotScan's diagnostic capability was validated with an extensive clinical trial using mononuclear cells from the blood or bone marrow of leukemia or lymphoma patients. DotScan has also been used for the profiling of surface proteins on peripheral blood mononuclear cells (PBMC) from patients with HIV, liver disease, and stable and progressive B-cell chronic lymphocytic leukemia (CLL). Fluorescence multiplexing allowed the simultaneous profiling of cancer cells and leukocytes from disaggregated colorectal and melanoma tumor biopsies after capture on DotScan. In this chapter, we have used DotScan for the surface profiling of extracellular vesicles (EV) recovered from conditioned growth medium of cancer cell lines and the blood of patients with CLL. The detection of captured EV was performed by enhanced chemiluminescence (ECL) using biotinylated antibodies that recognized antigens expressed on the surface of the EV subset of interest. DotScan was also used to profile EV from the blood of healthy individuals and the ascites fluid of ovarian cancer patients. DotScan binding patterns of EV from human plasma and other body fluids may yield diagnostic or prognostic signatures for monitoring the incidence, treatment, and progression of cancers.


Subject(s)
Antibodies , Ascites , Extracellular Vesicles , Plasma , Protein Array Analysis/methods , Antibodies/immunology , Antigens, CD , Biomarkers , Cell Line , Extracellular Vesicles/metabolism , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukocytes, Mononuclear , Luminescent Measurements/methods , Ovarian Neoplasms/blood , Plasma/chemistry
18.
Sci Rep ; 7: 46312, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406185

ABSTRACT

Oct4A is a master regulator of self-renewal and pluripotency in embryonic stem cells. It is a well-established marker for cancer stem cell (CSC) in malignancies. Recently, using a loss of function studies, we have demonstrated key roles for Oct4A in tumor cell survival, metastasis and chemoresistance in in vitro and in vivo models of ovarian cancer. In an effort to understand the regulatory role of Oct4A in tumor biology, we employed the use of an ovarian cancer shRNA Oct4A knockdown cell line (HEY Oct4A KD) and a global mass spectrometry (MS)-based proteomic analysis to investigate novel biological targets of Oct4A in HEY samples (cell lysates, secretomes and mouse tumor xenografts). Based on significant differential expression, pathway and protein network analyses, and comprehensive literature search we identified key proteins involved with biologically relevant functions of Oct4A in tumor biology. Across all preparations of HEY Oct4A KD samples significant alterations in protein networks associated with cytoskeleton, extracellular matrix (ECM), proliferation, adhesion, metabolism, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance was observed. This comprehensive proteomics study for the first time presents the Oct4A associated proteome and expands our understanding on the biological role of this stem cell regulator in carcinomas.


Subject(s)
Cellular Reprogramming/genetics , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/deficiency , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Animals , Biomarkers , Cell Line, Tumor , Computational Biology/methods , Cytoskeleton/metabolism , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Gene Knockdown Techniques , Humans , Immunohistochemistry , Mice , Neoplastic Stem Cells/drug effects , Ovarian Neoplasms/pathology , Proteome/metabolism , Proteomics/methods , Reproducibility of Results , Signal Transduction , Xenograft Model Antitumor Assays
19.
Indian J Hematol Blood Transfus ; 32(Suppl 1): 112-116, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27408370

ABSTRACT

Classic "BCR-ABL1-negative" MPN is an operational sub-category of MPN that includes polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) harboring JAK2V617F as the most common mutation. JAK2V617F can be detected in about 95 % of patients with PV while remaining 5 % of PV patients carry a somatic mutation of JAK2 exon 12. Approximately one-third of patients with ET or PMF do not carry any mutation in JAK2 or MPL. In December 2013, mutations were described in calreticulin (CALR) gene in 67-71 and 56-88 % of JAK2V617F and MPL negative patients with ET and PMF, respectively. Since this discovery CALR mutations have been reported to be mutually exclusive with JAK2V617F or MPL mutations. However recently few studies (eleven published reports) reported the coexistence of JAK2V617F and CALR in MPN. In the present study we are reporting JAK2V617F positive ET patient from our center with coexisting CALR exon 9 mutation type c.1214_1225del12 (p.E405_D408del) that was never reported before as a coexisting mutation and describing in detail the clinical outcomes.

20.
BMC Cancer ; 16: 432, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27390927

ABSTRACT

BACKGROUND: Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer metastasis. METHODS: The expression of Oct4A in high-grade serous ovarian tumors and normal ovaries was determined by immunofluorescence analysis. The functional role of Oct4A was evaluated by generating stable knockdown (KD) of Oct4A clones in an established ovarian cancer cell line HEY using shRNA-mediated silencing. The expression of integrins in cell lines was evaluated by flow cytometry. Spheroid forming ability, adhesion and the activities of matrix metalloproteinases 9/2 (MMP-9/2) was measured by in vitro functional assays and gelatin zymography. These observations were further validated in in vivo mouse models using Balb/c nu/nu mice. RESULTS: We report significantly elevated expression of Oct4A in high-grade serous ovarian tumors compared to normal ovarian tissues. The expression of Oct4A in ovarian cancer cell lines correlated with their CSC-related sphere forming abilities. The suppression of Oct4A in HEY cells resulted in a significant diminution of integrin ß1 expression and associated α5 and α2 subunits compared to vector control cells. This was associated with a reduced adhesive ability on collagen and fibronectin and decreased secretion of pro-MMP2 in Oct4A KD cells compared to vector control cells. In vivo, Oct4A knock down (KD) cells produced tumors which were significantly smaller in size and weight compared to tumors derived from vector control cells. Immunohistochemical analyses of Oct4A KD tumor xenografts demonstrated a significant loss of cytokeratin 7 (CK7), Glut-1 as well as CD34 and CD31 compared to vector control cell-derived xenografts. CONCLUSION: The expression of Oct4A may be crucial to promote and sustain integrin-mediated extracellular matrix (ECM) remodeling requisite for tumor metastasis in ovarian cancer patients.


Subject(s)
Integrin beta1/metabolism , Neoplasms, Cystic, Mucinous, and Serous/metabolism , Octamer Transcription Factor-3/metabolism , Ovarian Neoplasms/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha Chains/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Neoplasms, Cystic, Mucinous, and Serous/secondary , Ovarian Neoplasms/pathology , Protein Isoforms/metabolism , Spheroids, Cellular/metabolism , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...