Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
J Neuroinflammation ; 21(1): 94, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622640

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS: We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS: We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS: These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.


Subject(s)
Brain Injuries, Traumatic , Fibrin , Humans , Mice , Animals , Fibrin/genetics , Fibrin/metabolism , Brain Injuries, Traumatic/pathology , Fibrinogen/metabolism , Immunity, Innate , Oxidative Stress , Mice, Inbred C57BL
2.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986739

ABSTRACT

Objective: We sought to create and characterize a mouse model of the inflammatory, cerebral demyelinating phenotype of X-linked adrenoleukodystrophy (ALD) that would facilitate the study of disease pathogenesis and therapy development. We also sought to cross-validate potential therapeutic targets such as fibrin, oxidative stress, and the NLRP3 inflammasome, in post-mortem human and murine brain tissues. Background: ALD is caused by mutations in the gene ABCD1 encoding a peroxisomal transporter. More than half of males with an ABCD1 mutation develop the cerebral phenotype (cALD). Incomplete penetrance and absence of a genotype-phenotype correlation imply a role for environmental triggers. Mechanistic studies have been limited by the absence of a cALD phenotype in the Abcd1-null mouse. Methods: We generated a cALD phenotype in 8-week-old, male Abcd1-null mice by deploying a two-hit method that combines cuprizone (CPZ) and experimental autoimmune encephalomyelitis (EAE) models. We employed in vivo MRI and post-mortem immunohistochemistry to evaluate myelin loss, astrogliosis, blood-brain barrier (BBB) disruption, immune cell infiltration, fibrin deposition, oxidative stress, and Nlrp3 inflammasome activation in mice. We used bead-based immunoassay and immunohistochemistry to evaluate IL-18 in CSF and post-mortem human cALD brain tissue. Results: MRI studies revealed T2 hyperintensities and post-gadolinium enhancement in the medial corpus callosum of cALD mice, similar to human cALD lesions. Both human and mouse cALD lesions shared common histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-null mice had more severe cerebral inflammation, demyelination, fibrin deposition, oxidative stress, and IL-18 activation. IL-18 immunoreactivity co-localized with macrophages/microglia in the perivascular region of both human and mouse brain tissue. Interpretation: This novel mouse model of cALD suggests loss of Abcd1 function predisposes to more severe cerebral inflammation, oxidative stress, fibrin deposition, and Nlrp3 pathway activation, which parallels the findings seen in humans with cALD. We expect this model to enable long-sought investigations into cALD mechanisms and accelerate development of candidate therapies for lesion prevention, cessation, and remyelination.

3.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Article in English | MEDLINE | ID: mdl-37291385

ABSTRACT

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Multiomics , Blood-Brain Barrier/metabolism , Alzheimer Disease/genetics , Fibrinogen
4.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711912

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune disease characterized by progressive multiorgan fibrosis. While the cause of SSc remains unknown, a perturbed vasculature is considered a critical early step in the pathogenesis. Using fibrinogen as a marker of vascular leakage, we found extensive extravascular fibrinogen deposition in the dermis of both limited and diffuse systemic sclerosis disease, and it was present in both early and late-stage patients. Based on a timed series of excision wounds, retention on the fibrin deposit of the splice variant domain, fibrinogen αEC, indicated a recent event, while fibrin networks lacking the αEC domain were older. Application of this timing tool to SSc revealed considerable heterogeneity in αEC domain distribution providing unique insight into disease activity. Intriguingly, the fibrinogen-αEC domain also accumulated in macrophages. These observations indicate that systemic sclerosis is characterized by ongoing vascular leakage resulting in extensive interstitial fibrin deposition that is either continually replenished and/or there is impaired fibrin clearance. Unresolved fibrin deposition might then incite chronic tissue remodeling.

5.
Methods Mol Biol ; 2561: 87-101, 2023.
Article in English | MEDLINE | ID: mdl-36399266

ABSTRACT

Cerebrovascular dysfunction is a hallmark of Alzheimer's disease (AD) that is linked to cognitive decline. However, blood-brain barrier (BBB) disruption in AD is focal and requires sensitive methods to detect extravasated blood proteins and vasculature in large brain volumes. Fibrinogen, a blood coagulation factor, is deposited in AD brains at sites of BBB disruption and cerebrovascular damage. This chapter presents the methodology of fibrinogen immunolabeling-enabled three-dimensional (3D) imaging of solvent-cleared organs (iDISCO) which, when combined with immunolabeling of amyloid ß (Aß) and vasculature, enables sensitive detection of focal BBB vascular abnormalities, and reveals the spatial distribution of Aß plaques and fibrin deposits, in large tissue volumes from cleared human brains. Overall, fibrinogen iDISCO enables the investigation of neurovascular and neuroimmune mechanisms driving neurodegeneration in disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Fibrinogen/metabolism , Imaging, Three-Dimensional , Plaque, Amyloid
6.
Br J Anaesth ; 129(2): 147-150, 2022 08.
Article in English | MEDLINE | ID: mdl-35718561

ABSTRACT

Systemic perturbations such as peripheral surgical trauma induce neurovascular, inflammatory, and cognitive changes. The blood-brain barrier is a key interface between the periphery and the central nervous system, and is critically involved in regulating neuroimmune interactions to maintain overall homeostasis. Mounting evidence suggests that blood-brain barrier dysfunction is a hallmark of ageing and multiple neurological conditions including Alzheimer's disease. We discuss a recent study published in the British Journal of Anaesthesia that describes blood-brain barrier changes and neuroinflammation in patients with postoperative delirium after non-intracranial surgery.


Subject(s)
Alzheimer Disease , Delirium , Blood-Brain Barrier , Central Nervous System , Delirium/etiology , Humans , Neuroimmunomodulation
7.
Alzheimers Dement (Amst) ; 14(1): e12284, 2022.
Article in English | MEDLINE | ID: mdl-35386474

ABSTRACT

Introduction: Despite women showing greater Alzheimer's disease (AD) prevalence, tau burden, and immune/neuroinflammatory response, whether neuroinflammation impacts cognition differently in women versus men and the biological basis of this impact remain unknown. We examined sex differences in how cerebrospinal fluid (CSF) neuroinflammation relates to cognition across the aging-mild cognitive impairment (MCI)-AD continuum and the mediating role of phosphorylated tau (p-tau) versus other AD biomarkers. Methods: Participants included 284 individuals from the Alzheimer's Disease Neuroimaging Initiative study. CSF neuroinflammatory markers included interleukin-6, tumor necrosis factor α, soluble tumor necrosis factor receptor 2 (sTNFR2), and chitinase-3-like protein 1. AD biomarkers were CSF p-tau181 and amyloid beta1-42 levels and magnetic resonance imaging measures of hippocampal and white matter hyperintensity volumes. Results: We found a sex-by-sTNFR2 interaction on Mini-Mental State Examination and Clinical Dementia Rating-Sum of Boxes. Higher levels of sTNFR2 related to poorer cognition in women only. Among biomarkers, only p-tau181 eliminated the female-specific relationships between neuroinflammation and cognition. Discussion: Women may be more susceptible than men to the adverse effects of sTNFR2 on cognition with a potential etiological link with tau to these effects.

8.
Immunity ; 54(11): 2439-2441, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758333

ABSTRACT

In this issue of Immunity, Vega-Pérez et al. (2021) reveal the formation of a dynamic multicellular aggregate within a fibrin scaffold consisting of large peritoneal macrophages, B1 cells, neutrophils, and monocytes during antibacterial immunity in the peritoneum. Anticoagulants targeting thrombin or peritoneal macrophage depletion by clodronate impaired efficient control of E. coli infection.


Subject(s)
Escherichia coli , Fibrin , Animals , Blood Coagulation , Mice , Mice, Inbred C57BL , Monocytes
9.
bioRxiv ; 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34671772

ABSTRACT

Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity. SARS-CoV-2 Spike virions enhanced fibrin-mediated microglia activation and induced fibrinogen-dependent lung pathology. COVID-19 patients had fibrin autoantibodies that persisted long after acute infection. Monoclonal antibody 5B8, targeting the cryptic inflammatory fibrin epitope, inhibited thromboinflammation. Our results reveal a procoagulant role for the SARS-CoV-2 Spike and propose fibrin-targeting interventions as a treatment for thromboinflammation in COVID-19. ONE-SENTENCE SUMMARY: SARS-CoV-2 spike induces structurally abnormal blood clots and thromboinflammation neutralized by a fibrin-targeting antibody.

10.
Neuron ; 109(15): 2363-2365, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34352209

ABSTRACT

In this issue of Neuron, Shi et al. (2021) show a protective role for the low-density lipoprotein receptor (LDLR) in tau pathology. Brain overexpression of LDLR lowers apolipoprotein E (apoE), suppresses microglial activation, preserves myelin, and ameliorates neurodegeneration, pointing the way toward potential new therapies.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Brain/metabolism , Humans , Lipoproteins, LDL , Receptors, LDL/genetics , Receptors, LDL/metabolism , Tauopathies/genetics
11.
Brain ; 144(8): 2291-2301, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34426831

ABSTRACT

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Subject(s)
Blood-Brain Barrier/drug effects , Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Oligodendroglia/drug effects , Remyelination/drug effects , Spinal Cord/drug effects , Animals , Blood-Brain Barrier/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/drug effects , Homeostasis/drug effects , Mice , Mice, Transgenic , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Spinal Cord/metabolism
12.
Trends Pharmacol Sci ; 42(9): 772-788, 2021 09.
Article in English | MEDLINE | ID: mdl-34334250

ABSTRACT

The p75 neurotrophin receptor (p75NTR) functions at the molecular nexus of cell death, survival, and differentiation. In addition to its contribution to neurodegenerative diseases and nervous system injuries, recent studies have revealed unanticipated roles of p75NTR in liver repair, fibrinolysis, lung fibrosis, muscle regeneration, and metabolism. Linking these various p75NTR functions more precisely to specific mechanisms marks p75NTR as an emerging candidate for therapeutic intervention in a wide range of disorders. Indeed, small molecule inhibitors of p75NTR binding to neurotrophins have shown efficacy in models of Alzheimer's disease (AD) and neurodegeneration. Here, we outline recent advances in understanding p75NTR pleiotropic functions in vivo, and propose an integrated view of p75NTR and its challenges and opportunities as a pharmacological target.


Subject(s)
Alzheimer Disease , Receptor, Nerve Growth Factor , Alzheimer Disease/drug therapy , Cell Death , Humans
13.
STAR Protoc ; 2(3): 100638, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34258598

ABSTRACT

Deposition of the blood coagulation factor fibrinogen in the central nervous system is a hallmark of neurological diseases with blood-brain barrier disruption. We describe in vivo two-photon imaging of microglial responses and neuronal spine elimination to either intracortical microinjection of fibrinogen in healthy mice or to endogenously labeled fibrinogen deposits in Alzheimer's disease mice. This protocol allows the longitudinal study of glial and neuronal responses to blood proteins and can be used to test drug efficacy at the neurovascular interface. For complete details on the use and execution of this protocol, please refer to Davalos et al. (2012), Ryu et al. (2018), and Merlini et al. (2019).


Subject(s)
Brain/metabolism , Dendritic Spines/metabolism , Fibrinogen/metabolism , Microglia/metabolism , Microscopy/methods , Alzheimer Disease/metabolism , Animals , Blood-Brain Barrier , Disease Models, Animal , Fluorescent Dyes/chemistry , Mice , Photons
14.
Am J Pathol ; 191(3): 575-583, 2021 03.
Article in English | MEDLINE | ID: mdl-33608067

ABSTRACT

Central nervous system (CNS) lymphoma is an extranodal non-Hodgkin B-cell lymphoma characterized by malignant lymph tissue arising in the brain or spinal cord, associated with inflammation and blood-brain barrier (BBB) disruption. Although BBB disruption is known to occur in patients with CNS lymphoma, a direct link between these two has not been shown. Herein, abundant deposition of the blood coagulation protein fibrinogen around B-cell lymphoma was detected in CNS lymphoma patients and in the CNS parenchyma in an orthotopic mouse model. Functional enrichment analysis of unbiased cerebrospinal fluid proteomics of CNS B-cell lymphoma patients showed that coagulation protein networks were highly connected with tumor-associated biological signaling pathways. In vivo two-photon imaging demonstrated that lymphoma growth was associated with BBB disruption, and in vitro experiments identified a role for fibrinogen in promoting lymphoma cell adhesion. Overall, these results identify perivascular lymphoma clustering at sites of fibrinogen deposition, and suggest that fibrinogen may be a target for pharmacologic intervention in metastatic B-cell lymphoma associated with BBB disruption.


Subject(s)
Cell Adhesion , Central Nervous System Neoplasms/pathology , Fibrinogen/metabolism , Inflammation/pathology , Lymphocytes/pathology , Lymphoma, B-Cell/pathology , Animals , Biological Transport , Central Nervous System Neoplasms/etiology , Central Nervous System Neoplasms/metabolism , Disease Models, Animal , Fibrinogen/genetics , Humans , Inflammation/etiology , Inflammation/metabolism , Lymphocytes/metabolism , Lymphoma, B-Cell/etiology , Lymphoma, B-Cell/metabolism , Male , Mice , Mice, Nude
15.
Nat Neurosci ; 24(1): 19-23, 2021 01.
Article in English | MEDLINE | ID: mdl-33318667

ABSTRACT

Microglial surveillance is a key feature of brain physiology and disease. Here, we found that Gi-dependent microglial dynamics prevent neuronal network hyperexcitability. By generating MgPTX mice to genetically inhibit Gi in microglia, we show that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony after physiologically evoked neuronal activity in awake adult mice. Thus, Gi-dependent microglia dynamics may prevent hyperexcitability in neurological diseases.


Subject(s)
G-Protein-Coupled Receptor Kinase 1/physiology , Microglia/physiology , Nerve Net/physiology , Animals , Calcium Signaling , Cell Movement , Convulsants , Electroencephalography , Immunologic Surveillance , Mice , Microglia/enzymology , Microglia/ultrastructure , Nervous System Diseases/physiopathology , Nervous System Physiological Phenomena , Pilocarpine , Seizures/physiopathology , Signal Transduction , rho GTP-Binding Proteins/metabolism
17.
Nat Immunol ; 21(9): 1134, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32636513

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Immunol ; 21(5): 513-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32284594

ABSTRACT

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression Profiling/methods , Microglia/physiology , Multiple Sclerosis/genetics , Neurogenic Inflammation/genetics , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Regulatory Networks , High-Throughput Screening Assays , Humans , Immunity, Innate , Isoxazoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Multiple Sclerosis/drug therapy , Neurogenic Inflammation/drug therapy , Oxidative Stress , Sequence Analysis, RNA , Single-Cell Analysis
20.
Nat Commun ; 11(1): 630, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005867

ABSTRACT

Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.


Subject(s)
Astrocytes/cytology , Bone Morphogenetic Protein Receptors, Type I/metabolism , Fibrinogen/metabolism , Lateral Ventricles/cytology , Neural Stem Cells/cytology , Neurogenesis , Animals , Astrocytes/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Proteins/metabolism , Gene Expression Regulation , Hippocampus/cytology , Hippocampus/metabolism , Lateral Ventricles/metabolism , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...