Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Hum Mol Genet ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38770563

ABSTRACT

PURPOSE: Exfoliation syndrome (XFS) is a systemic disease of elastin-rich tissues involving a deposition of fibrillar exfoliative material (XFM) in the anterior chamber of the eye, which can promote glaucoma. The purpose of this study was to create mice with CRISPR/Cas9-induced variations in candidate genes identified from human genome-wide association studies (GWAS) and screen them for indices of XFS. METHODS: Variants predicted to be deleterious were sought in the Agpat1, Cacna1a, Loxl1, Pomp, Rbms3, Sema6a, and Tlcd5 genes of C57BL/6J mice using CRISPR/Cas9-based gene editing. Strains were phenotyped by slit-lamp, SD-OCT imaging, and fundus exams at 1-5 mos of age. Smaller cohorts of 12-mos-old mice were also studied. RESULTS: Deleterious variants were identified in six targets; Pomp was recalcitrant to targeting. Multiple alleles of some targets were isolated, yielding 12 strains. Across all genotypes and ages, 277 mice were assessed by 902 slit-lamp exams, 928 SD-OCT exams, and 358 fundus exams. Homozygosity for Agpat1 or Cacna1a mutations led to early lethality; homozygosity for Loxl1 mutations led to pelvic organ prolapse, preventing aging. Loxl1 homozygotes exhibited a conjunctival phenotype of potential relevance to XFS. Multiple other genotype-specific phenotypes were variously identified. XFM was not observed in any mice. CONCLUSIONS: This study did not detect XFM in any of the strains. This may have been due to species-specific differences, background dependence, or insufficient aging. Alternatively, it is possible that the current candidates, selected based on proximity to GWAS signals, are not effectors acting via monogenic loss-of-function mechanisms.

2.
J Biomech ; 168: 112113, 2024 May.
Article in English | MEDLINE | ID: mdl-38648717

ABSTRACT

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.


Subject(s)
Microscopy, Atomic Force , Animals , Microscopy, Atomic Force/methods , Mice , Rats , Sclera/physiology , Sclera/diagnostic imaging , Cornea/physiology , Cornea/diagnostic imaging , Trabecular Meshwork/physiology , Trabecular Meshwork/diagnostic imaging , Cryoultramicrotomy/methods , Optic Disk/diagnostic imaging , Optic Disk/physiology , Biomechanical Phenomena
3.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014311

ABSTRACT

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.

4.
PLoS One ; 18(8): e0286897, 2023.
Article in English | MEDLINE | ID: mdl-37624784

ABSTRACT

Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10-12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait.


Subject(s)
Anterior Chamber , Quantitative Trait Loci , Animals , Mice , Anterior Chamber/anatomy & histology , Anterior Chamber/physiology , Chromosomes, Human, Pair 6 , Genotype , Inheritance Patterns
5.
G3 (Bethesda) ; 13(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-36891866

ABSTRACT

The Emory cataract (Em) mouse mutant has long been proposed as an animal model for age-related or senile cataract in humans-a leading cause of visual impairment. However, the genetic defect(s) underlying the autosomal dominant Em phenotype remains elusive. Here, we confirmed development of the cataract phenotype in commercially available Em/J mice [but not ancestral Carworth Farms White (CFW) mice] at 6-8 months of age and undertook whole-exome sequencing of candidate genes for Em. Analysis of coding and splice-site variants did not identify any disease-causing/associated mutations in over 450 genes known to underlie inherited and age-related forms of cataract and other lens disorders in humans and mice, including genes for lens crystallins, membrane/cytoskeleton proteins, DNA/RNA-binding proteins, and those associated with syndromic/systemic forms of cataract. However, we identified three cataract/lens-associated genes each with one novel homozygous variant including predicted missense substitutions in Prx (p.R167C) and Adamts10 (p.P761L) and a disruptive in-frame deletion variant (predicted missense) in Abhd12 (p.L30_A32delinsS) that were absent in CFW and over 35 other mouse strains. In silico analysis predicted that the missense substitutions in Prx and Adamts10 were borderline neutral/damaging and neutral, respectively, at the protein function level, whereas, that in Abhd12 was functionally damaging. Both the human counterparts of Adamts10 and Abhd12 are clinically associated with syndromic forms of cataract known as Weil-Marchesani syndrome 1 and polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract syndrome, respectively. Overall, while we cannot exclude Prx and Adamts10, our data suggest that Abhd12 is a promising candidate gene for cataract in the Em/J mouse.


Subject(s)
Cataract , Retinitis Pigmentosa , Animals , Humans , Mice , Exome Sequencing , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Cataract/genetics , Phenotype , Models, Animal , Pedigree , Monoacylglycerol Lipases/genetics , ADAMTS Proteins/genetics
6.
Transl Vis Sci Technol ; 12(3): 9, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36917117

ABSTRACT

Purpose: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learning (DL) tool that (i) counts normal-appearing RGC axons and (ii) quantifies their morphometry from light micrographs. Methods: A DL algorithm was trained to segment the axoplasm and myelin sheath of normal-appearing axons using manually-annotated rat optic nerve (ON) cross-sectional micrographs. Performance was quantified by various metrics (e.g., soft-Dice coefficient between predicted and ground-truth segmentations). We also quantified axon counts, axon density, and axon size distributions between hypertensive and control eyes and compared to literature reports. Results: AxoNet 2.0 performed very well when compared to manual annotations of rat ON (R2 = 0.92 for automated vs. manual counts, soft-Dice coefficient = 0.81 ± 0.02, mean absolute percentage error in axonal morphometric outcomes < 15%). AxoNet 2.0 also showed promise for generalization, performing well on other animal models (R2 = 0.97 between automated versus manual counts for mice and 0.98 for non-human primates). As expected, the algorithm detected decreased in axon density in hypertensive rat eyes (P ≪ 0.001) with preferential loss of large axons (P < 0.001). Conclusions: AxoNet 2.0 provides a fast and nonsubjective tool to quantify both RGC axon counts and morphological features, thus assisting with assessing axonal damage in animal models of glaucomatous optic neuropathy. Translational Relevance: This deep learning approach will increase rigor of basic science studies designed to investigate RGC axon protection and regeneration.


Subject(s)
Deep Learning , Glaucoma , Rats , Mice , Animals , Retinal Ganglion Cells/physiology , Cross-Sectional Studies , Disease Models, Animal , Axons/physiology , Glaucoma/diagnosis
7.
J Anim Ecol ; 92(1): 30-43, 2023 01.
Article in English | MEDLINE | ID: mdl-36426636

ABSTRACT

Decades of research have shown that the coevolutionary arms race between avian brood parasites and their hosts can promote phenotypic diversification in hosts and brood parasites. However, relatively little is known about the role of brood parasitism in promoting phenotypic diversification of nestlings. We review field data collected over four decades in Australia, New Caledonia and New Zealand to assess potential for coevolutionary interactions between the shining bronze-cuckoo (Chalcites lucidus) and its hosts, and how diversification at the nestling stage may be generating different subspecies. The shining bronze-cuckoo is a specialist parasite of a few hosts in the family Acanthizidae. It has diversified into subspecies, of which the nestlings closely mimic the respective host nestlings in each region. Additionally, some cuckoo subspecies have polymorphic nestlings. The Acanthizidae hosts have similar breeding and nesting habits and only moderately effective frontline defences against parasitism at cuckoo egg laying or at the egg stages. However, some hosts have developed highly effective defences at the nestling stage by recognising and ejecting cuckoo nestlings from the nest. As with the cuckoo nestlings, some hosts have polymorphic nestlings. The coevolutionary interactions in each region suggest different evolutionary stages of the arms race in which either the parasite or the host is currently in the lead. The presence of moderately effective defences at the egg laying and egg stages might explain why some hosts do not have defences at the nestling stage. The south-Pacific cuckoo - host systems are excellent models to explore the evolutionary mechanisms driving the diversification at the nestling stage in the coevolutionary arms race between avian brood parasites and their hosts.


Subject(s)
Parasites , Passeriformes , Animals , Nesting Behavior , Australia , Biological Evolution , Host-Parasite Interactions
8.
Transl Vis Sci Technol ; 11(9): 17, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36135979

ABSTRACT

Purpose: Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology. Methods: J:DO mice (n = 48) underwent fundoscopic and OCT examinations, with automated segmentation of GCC thickness. RGC axons were quantified from para-phenylenediamine-stained optic nerve cross-sections and somas from BRN3A-immunolabeled retinal wholemounts, with total inner retinal cellularity assessed by TO-PRO and subsequent hematoxylin staining. Results: J:DO tissues lacked overt disease. GCC thickness, RGC abundance, and total cell abundance varied broadly across individuals. GCC thickness correlated significantly to RGC somal density (r = 0.58) and axon number (r = 0.44), but not total cell density. Retinal area and nerve cross-sectional area varied widely. No metrics were significantly influenced by sex. In bilateral comparisons, GCC thickness (r = 0.95), axon (r = 0.72), and total cell density (r = 0.47) correlated significantly within individuals. Conclusions: Amongst outbred mice, OCT-derived measurements of GCC thickness correlate significantly to RGC somal and axon abundance. Factors limiting correlation are likely both biological and methodological, including differences in retinal area that distort sampling-based estimates of RGC abundance. Translational Relevance: There are significant-but imperfect-correlations between GCC thickness and RGC abundance across genetic contexts in mice, highlighting valid uses and ongoing challenges for meaningful use of OCT-derived metrics.


Subject(s)
Glaucoma , Optic Nerve Diseases , Animals , Glaucoma/diagnosis , Hematoxylin , Mice , Optic Nerve Diseases/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods
9.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35129590

ABSTRACT

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Subject(s)
Aqueous Humor/physiology , Consensus , Glaucoma/metabolism , Intraocular Pressure/physiology , Ocular Hypertension/metabolism , Trabecular Meshwork/metabolism , Animals , Disease Models, Animal , Glaucoma/physiopathology , Mice , Ocular Hypertension/physiopathology , Tonometry, Ocular
10.
Gene Ther ; 29(5): 227-235, 2022 05.
Article in English | MEDLINE | ID: mdl-33664503

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare ciliopathy for which there are no current effective treatments. BBS is a genetically heterogeneous disease, though the M390R mutation in BBS1 is involved in ~25% of all genetic diagnoses of BBS. The principle features of BBS include retinal degeneration, obesity, male infertility, polydactyly, intellectual disability, and renal abnormalities. Patients with mutations in BBS genes often present with night blindness within the first decade of life, which progresses to complete blindness. This is due to progressive loss of photoreceptor cells. Male infertility is caused by a lack of spermatozoa flagella, rendering them immobile. In this study, we have crossed the wild-type human BBS1 gene, driven by the CAG promoter, onto the Bbs1M390R/M390R mouse model to determine if ectopic expression of BBS1 rescues male infertility and retinal degeneration. qRT-PCR indicates that the BBS1 transgene is expressed in multiple tissues throughout the mouse, with the highest expression seen in the testes, and much lower expression in the eye and hypothalamus. Immunohistochemistry of the transgene in the eye showed little if any expression in the photoreceptor outer nuclear layer. When male Bbs1M30R/M390R;BBS1TG+ mice are housed with WT females, they are able to sire offspring, indicating that the male infertility phenotype of BBS is rescued by the transgene. Using electroretinography (ERGs) to measure retinal function and optical coherence tomography to measure retinal thickness, we show that the transgene does not confer protection against retinal degeneration in Bbs1M300R/M390R;BBS1TG+ mice. The results of this study indicate that the male infertility aspect of BBS is an attractive target for gene therapy.


Subject(s)
Bardet-Biedl Syndrome , Infertility, Male , Retinal Degeneration , Animals , Bardet-Biedl Syndrome/diagnosis , Bardet-Biedl Syndrome/genetics , Disease Models, Animal , Ectopic Gene Expression , Female , Humans , Infertility, Male/genetics , Infertility, Male/therapy , Male , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mutation , Retinal Degeneration/genetics , Retinal Degeneration/therapy
11.
Transl Vis Sci Technol ; 10(14): 22, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34932117

ABSTRACT

Purpose: Optic nerve damage is the principal feature of glaucoma and contributes to vision loss in many diseases. In animal models, nerve health has traditionally been assessed by human experts that grade damage qualitatively or manually quantify axons from sampling limited areas from histologic cross sections of nerve. Both approaches are prone to variability and are time consuming. First-generation automated approaches have begun to emerge, but all have significant shortcomings. Here, we seek improvements through use of deep-learning approaches for segmenting and quantifying axons from cross-sections of mouse optic nerve. Methods: Two deep-learning approaches were developed and evaluated: (1) a traditional supervised approach using a fully convolutional network trained with only labeled data and (2) a semisupervised approach trained with both labeled and unlabeled data using a generative-adversarial-network framework. Results: From comparisons with an independent test set of images with manually marked axon centers and boundaries, both deep-learning approaches outperformed an existing baseline automated approach and similarly to two independent experts. Performance of the semisupervised approach was superior and implemented into AxonDeep. Conclusions: AxonDeep performs automated quantification and segmentation of axons from healthy-appearing nerves and those with mild to moderate degrees of damage, similar to that of experts without the variability and constraints associated with manual performance. Translational Relevance: Use of deep learning for axon quantification provides rapid, objective, and higher throughput analysis of optic nerve that would otherwise not be possible.


Subject(s)
Deep Learning , Glaucoma , Optic Nerve Injuries , Animals , Axons , Glaucoma/diagnosis , Mice , Optic Nerve/diagnostic imaging
12.
Exp Eye Res ; 212: 108774, 2021 11.
Article in English | MEDLINE | ID: mdl-34597676

ABSTRACT

The nee mouse model exhibits characteristic features of congenital glaucoma, a common cause of childhood blindness. The current study of nee mice had two components. First, the time course of neurodegeneration in nee retinal flat-mounts was studied over time using a retinal ganglion cell (RGC)-marker, BRN3A; a pan-nuclear marker, TO-PRO-3; and H&E staining. Based on segmentation of nuclei using ImageJ and RetFM-J, this analysis identified a rapid loss of BRN3A+ nuclei from 4 to 15 weeks of age, with the first statistically significant difference in average density compared to age-matched controls detected in 8-week-old cohorts (49% reduction in nee). Consistent with a model of glaucoma, no reductions in BRN3A- nuclei were detected, but the combined analysis indicated that some RGCs lost BRN3A marker expression prior to actual cell loss. These results have a practical application in the design of experiments using nee mice to study mechanisms or potential therapies for congenital glaucoma. The second component of the study pertains to a discovery-based analysis of the large amount of image data with 748,782 segmented retinal nuclei. Using the automatedly collected region of interest feature data captured by ImageJ, we tested whether RGC density of glaucomatous mice was significantly correlated to average nuclear area, perimeter, Feret diameter, or MinFeret diameter. These results pointed to two events influencing nuclear size. For variations in RGC density above approximately 3000 nuclei/mm2 apparent spreading was observed, in which BRN3A- nuclei-regardless of genotype-became slightly larger as RGC density decreased. This same spreading occurred in BRN3A+ nuclei of wild-type mice. For variation in RGC density below 3000 nuclei/mm2, which only occurred in glaucomatous nee mutants, BRN3A+ nuclei became smaller as disease was progressively severe. These observations have relevance to defining RGCs of relatively higher sensitivity to glaucomatous cell death and the nuclear dynamics occurring during their demise.


Subject(s)
Cell Nucleus/pathology , Glaucoma/pathology , Retinal Ganglion Cells/metabolism , Tomography, Optical Coherence/methods , Animals , Cell Count , Disease Models, Animal , Glaucoma/congenital , Glaucoma/metabolism , Mice , Mice, Mutant Strains , Retinal Ganglion Cells/pathology
13.
Mol Metab ; 53: 101308, 2021 11.
Article in English | MEDLINE | ID: mdl-34303879

ABSTRACT

OBJECTIVES: Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells. METHODS: We studied the effects of BBSome disruption in endothelial cells on vascular function, body weight, glucose homeostasis, and the liver and retina. For this, we generated mice with selective BBSome disruption in endothelial cells through Bbs1 gene deletion. RESULTS: We found that endothelial cell-specific BBSome disruption causes endothelial dysfunction, as indicated by the impaired acetylcholine-induced vasorelaxation in both the aorta and mesenteric artery. This was associated with an increase in the contractile response to thromboxane A2 receptor agonist (U46619) in the mesenteric artery. Mechanistically, we demonstrated that mice lacking the Bbs1 gene in endothelial cells show elevated vascular angiotensinogen gene expression, implicating renin-angiotensin system activation in the vascular changes evoked by endothelial BBSome deficiency. Strikingly, our data indicate that endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis along with alterations in hepatic expression of lipid metabolism-related genes and metabolomics profile. In addition, electroretinogram and optical coherence tomography analyses revealed functional and structural abnormalities in the retina, evoked by absence of the endothelial BBSome. CONCLUSIONS: Our findings demonstrate that the BBSome in endothelial cells is required for the regulation of vascular function, adiposity, hepatic lipid metabolism, and retinal function.


Subject(s)
Endothelial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Retina/metabolism , Animals , Body Weight , Female , Male , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Transgenic
14.
BMC Genomics ; 22(1): 477, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174832

ABSTRACT

BACKGROUND: Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown. We sought to discover genes that cause PDS by testing cohorts of patients and controls for mutations using a tiered analysis of exome data. RESULTS: Our primary analysis evaluated melanosome-related genes that cause dispersion of iris pigment in mice (TYRP1, GPNMB, LYST, DCT, and MITF). We identified rare mutations, but they were not statistically enriched in PDS patients. Our secondary analyses examined PMEL (previously linked with PDS), MRAP, and 19 other genes. Four MRAP mutations were identified in PDS cases but not in controls (p = 0.016). Immunohistochemical analysis of human donor eyes revealed abundant MRAP protein in the iris, the source of pigment in PDS. However, analysis of MRAP in additional cohorts (415 cases and 1645 controls) did not support an association with PDS. We also did not confirm a link between PMEL and PDS in our cohorts due to lack of reported mutations and similar frequency of the variants in PDS patients as in control subjects. CONCLUSIONS: We did not detect a statistical enrichment of mutations in melanosome-related genes in human PDS patients and we found conflicting data about the likely pathogenicity of MRAP mutations. PDS may have a complex genetic basis that is not easily unraveled with exome analyses.


Subject(s)
Exome , Glaucoma, Open-Angle , Animals , Glaucoma, Open-Angle/genetics , Humans , Iris , Membrane Glycoproteins , Mice , Pigmentation , Exome Sequencing
15.
Sci Rep ; 11(1): 11774, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083587

ABSTRACT

Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons-with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.


Subject(s)
Blast Injuries/complications , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/etiology , Vision Disorders/etiology , Animals , Axons/metabolism , Biomarkers , Cell Death , Disease Models, Animal , Gene Expression Profiling , Mice , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Time Factors , Tomography, Optical Coherence , Vision Disorders/diagnosis , Vision Disorders/metabolism
16.
Invest Ophthalmol Vis Sci ; 62(7): 13, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34106210

ABSTRACT

Purpose: The purpose of this study was to examine the influence of genetic background on the retinal ganglion cell (RGC) response to blast-mediated traumatic brain injury (TBI) in Jackson Diversity Outbred (J:DO), C57BL/6J and BALB/cByJ mice. Methods: Mice were subject to one blast injury of 137 kPa. RGC structure was analyzed by optical coherence tomography (OCT), function by the pattern electroretinogram (PERG), and histologically using BRN3A antibody staining. Results: Comparison of the change in each group from baseline for OCT and PERG was performed. There was a significant difference in the J:DOΔOCT compared to C57BL/6J mice (P = 0.004), but not compared to BALB/cByJ (P = 0.21). There was a significant difference in the variance of the ΔOCT in J:DO compared to both C57BL/6J and BALB/cByJ mice. The baseline PERG amplitude was 20.33 ± 9.32 µV, which decreased an average of -4.14 ± 12.46 µV following TBI. Baseline RGC complex + RNFL thickness was 70.92 ± 4.52 µm, which decreased an average of -1.43 ± 2.88 µm following blast exposure. There was not a significant difference in the ΔPERG between J:DO and C57BL/6J (P = 0.13), although the variances of the groups were significantly different. Blast exposure in J:DO mice results in a density change of 558.6 ± 440.5 BRN3A-positive RGCs/mm2 (mean ± SD). Conclusions: The changes in retinal outcomes had greater variance in outbred mice than what has been reported, and largely replicated herein, for inbred mice. These results demonstrate that the RGC response to blast injury is highly dependent upon genetic background.


Subject(s)
Blast Injuries/complications , Brain Injuries, Traumatic , Retina , Retinal Ganglion Cells/physiology , Stress, Physiological/physiology , Transcription Factor Brn-3A/genetics , Animals , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Electroretinography/methods , Genetic Variation , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Retina/pathology , Retina/physiology , Tomography, Optical Coherence/methods
17.
Mol Vis ; 27: 741-756, 2021.
Article in English | MEDLINE | ID: mdl-35136346

ABSTRACT

PURPOSE: Ocular tissues of mice have been studied in many ways using replication-deficient species C type 5 adenovirus (Ad5) as a tool for manipulating gene expression. Whereas refinements to injection protocols and tropism have led to several advances in targeting cells of interest, there remains a relative lack of information concerning how Ad5 may influence other ocular cell types capable of confounding experimental interpretation. Here, a slit lamp is used to thoroughly photodocument the sequelae of intraocular Ad5 injections over time in mice, with attention to potentially confounding indices of inflammation. METHODS: A cohort of C57BL/6J mice was randomly split into three groups (Virus, receiving unilateral intracameral injection with 5×107 plaque-forming units (pfu) of a cargo-less Ad5 construct; Saline, receiving unilateral balanced salt solution injection; and Naïve, receiving no injections). From this initial experiment, a total of 52 eyes from 26 mice were photodocumented via slit lamp at four time points (baseline and 1, 3, and 10 weeks following initiation of the experiment) by an observer masked to treatments and other parameters of the experimental design. Following the last in vivo exam, tissues were collected. Based on the slit-lamp data, tissues were studied via immunostaining with the macrophage marker F4/80. Subsequently, three iterations of the original experiment were performed with otherwise identical experimental parameters testing the effect of age, intravitreal injection, and A195 buffer, adding slit-lamp photodocumentation of an additional 32 eyes from 16 mice. RESULTS: The masked investigator could use the sequential images from each mouse in the initial experiment to assign each mouse to its correct treatment group with near perfect fidelity. Virus-injected eyes were characterized by corneal damage indicative of intraocular injection and a prolonged mobilization of clump cells on the surface of the iris. Saline-injected eyes had only transient corneal opacities indicative of intraocular injections, and Naïve eyes remained normal. Immunostaining with F4/80 was consistent with ascribing the clump cells visualized via slit-lamp imaging as a type of macrophage. Experimental iterations using Ad5 indicate that all virus-injected eyes had the distinguishing feature of a prolonged presence of clump cells on the surface of the iris regardless of injection site. Mice receiving an intraocular injection of Ad5 at an advanced age displayed a protracted course of corneal cloudiness that prevented detailed visualization of the iris at the last time point. CONCLUSIONS: Because the eye is often considered an "immune privileged site," we suspect that several studies have neglected to consider that the presence of Ad5 in the eye might evoke strong reactions from the innate immune system. Ad5 injection caused a sustained mobilization of clump cells-that is, macrophages. This change is likely a consequence of either direct macrophage transduction or a secondary response to cytokines produced locally by other transduced cells. Regardless of how these cells were altered, the important implication is that the adenovirus led to long-lasting changes in the environment of the anterior chamber. Thus, these findings describe a caveat of Ad5-mediated studies involving macrophage mobilization, which we encourage groups to use as a bioassay in their experiments and consider in interpretation of their ongoing experiments using adenoviruses.


Subject(s)
Adenoviridae , Anterior Chamber , Animals , Mice , Adenoviridae/genetics , Injections, Intraocular , Macrophages , Mice, Inbred C57BL
19.
Heliyon ; 6(2): e03374, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32099918

ABSTRACT

In addition to needing acute emergency management, blast-mediated traumatic brain injury (TBI) is also a chronic disorder with delayed-onset symptoms that manifest and progress over time. While the immediate consequences of acute blast injuries are readily apparent, chronic sequelae are harder to recognize. Indeed, the identification of individuals with mild-TBI or TBI-induced symptoms is greatly impaired in large part due to the lack of objective and robust biomarkers. The purpose of this study was to address these need by identifying candidates for serum-based biomarkers of blast TBI, and also to identify unique or differentially regulated protein expression in the thalamus in C57BL/6J mice exposed to blast using high throughput qualitative screens of protein expression. To identify thalamic proteins differentially or uniquely associated with blast exposure, we utilized an antibody-based affinity-capture strategy (referred to as "proteomics-based analysis of depletomes"; PAD) to deplete thalamic lysates from blast-treated mice of endogenous thalamic proteins also found in control mice. Analysis of this "depletome" detected 75 unique proteins, many with associations to the myelin sheath. To identify blast-associated proteins eliciting production of circulating autoantibodies, serum antibodies of blast-treated mice were immobilized, and their immunogens subsequently identified by proteomic analysis of proteins specifically captured following incubation with thalamic lysates (a variant of a strategy referred to as "proteomics-based expression library screening"; PELS). This analysis identified 46 blast-associated immunogenic proteins, including 6 shared in common with the PAD analysis (ALDOA, PHKB, HBA-A1, DPYSL2, SYN1, and CKB). These proteins and their autoantibodies are appropriate for further consideration as biomarkers of blast-mediated TBI.

20.
J Neurotrauma ; 37(12): 1463-1480, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32056479

ABSTRACT

The purpose of this study was to characterize acute changes in inflammatory pathways in the mouse eye after blast-mediated traumatic brain injury (bTBI) and to determine whether modulation of these pathways could protect the structure and function of retinal ganglion cells (RGC). The bTBI was induced in C57BL/6J male mice by exposure to three 20 psi blast waves directed toward the head with the body shielded, with an inter-blast interval of one hour. Acute cytokine expression in retinal tissue was measured through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) four hours post-blast. Increased retinal expression of interleukin (lL)-1ß, IL-1α, IL-6, and tumor necrosis factor (TNF)α was observed in bTBI mice exposed to blast when compared with shams, which was associated with activation of microglia and macroglia reactivity, assessed via immunohistochemistry with ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein, respectively, one week post-blast. Blockade of the IL-1 pathway was accomplished using anakinra, an IL-1RI antagonist, administered intra-peritoneally for one week before injury and continuing for three weeks post-injury. Retinal function and RGC layer thickness were evaluated four weeks post-injury using pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively. After bTBI, anakinra treatment resulted in a preservation of RGC function and RGC structure when compared with saline treated bTBI mice. Optic nerve integrity analysis demonstrated a trend of decreased damage suggesting that IL-1 blockade also prevents axonal damage after blast. Blast exposure results in increased retinal inflammation including upregulation of pro-inflammatory cytokines and activation of resident microglia and macroglia. This may explain partially the RGC loss we observed in this model, as blockade of the acute inflammatory response after injury with the IL-1R1 antagonist anakinra resulted in preservation of RGC function and RGC layer thickness.


Subject(s)
Brain Injuries, Traumatic/immunology , Immunity/immunology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Receptors, Interleukin-1/antagonists & inhibitors , Retina/immunology , Visual Perception/immunology , Animals , Blast Injuries/diagnostic imaging , Blast Injuries/drug therapy , Blast Injuries/immunology , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/drug therapy , Electroretinography/methods , Immunity/drug effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Male , Mice , Mice, Inbred C57BL , Retina/diagnostic imaging , Retina/drug effects , Tomography, Optical Coherence/methods , Treatment Outcome , Visual Perception/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...