Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Pediatr ; 270: 113774, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37839510

ABSTRACT

OBJECTIVE: To determine if oral secretions (OS) can be used as a noninvasively collected body fluid, in lieu of tracheal aspirates (TA), to track respiratory status and predict bronchopulmonary dysplasia (BPD) development in infants born <32 weeks. STUDY DESIGN: This was a retrospective, single center cohort study that included data and convenience samples from week-of-life (WoL) 3 from 2 independent preterm infant cohorts. Using previously banked samples, we applied our sample-sparing, high-throughput proteomics technology to compare OS and TA proteomes in infants born <32 weeks admitted to the Neonatal Intensive Care Unit (NICU) (Cohort 1; n = 23 infants). In a separate similar cohort, we mapped the BPD-associated changes in the OS proteome (Cohort 2; n = 17 infants including 8 with BPD). RESULTS: In samples collected during the first month of life, we identified 607 proteins unique to OS, 327 proteins unique to TA, and 687 overlapping proteins belonging to pathways involved in immune effector processes, neutrophil degranulation, leukocyte mediated immunity, and metabolic processes. Furthermore, we identified 37 OS proteins that showed significantly differential abundance between BPD cases and controls: 13 were associated with metabolic and immune dysregulation, 10 of which (eg, SERPINC1, CSTA, BPI) have been linked to BPD or other prematurity-related lung disease based on blood or TA investigations, but not OS. CONCLUSIONS: OS are a noninvasive, easily accessible alternative to TA and amenable to high-throughput proteomic analysis in preterm newborns. OS samples hold promise to yield actionable biomarkers of BPD development, particularly for prospective categorization and timely tailored treatment of at-risk infants with novel therapies.

2.
Breastfeed Med ; 17(9): 736-744, 2022 09.
Article in English | MEDLINE | ID: mdl-35731120

ABSTRACT

Background: Early in the COVID-19 pandemic, many birth hospitals separated SARS-CoV-2-positive mothers from their newborn infants and advised against breastfeeding to decrease postnatal SARS-CoV-2 transmission. Information on how these practices impacted breastfeeding postdischarge is limited. Objectives: In a statewide sample of SARS-CoV-2-positive mothers, we aimed to determine the extent to which (1) mother-infant separation and (2) a lack of breastfeeding initiation in-hospital were associated with breast milk feeding postdischarge. Design/Methods: From 11 birthing hospitals in Massachusetts, we identified 187 women who tested positive for SARS-CoV-2 from 14 days before to 72 hours after delivery (March 1-July 31, 2020) and their newborn infants. We abstracted chart data from the delivery hospitalization on main exposure variables (mother-infant separation, in-hospital breast milk feeding [expressed milk feeding and/or direct breastfeeding]) and from outpatient visits until 30 days postdischarge. We evaluated associations of in-hospital practices with outcomes up to 30 days postdischarge, adjusting for confounders using multivariable logistic and linear regression. Results: Mother-infant separation in-hospital was associated with a shorter duration of any breast milk feeding (regression coefficient estimate -5.29 days, 95% confidence intervals [CI] [-8.89 to -1.69]). Direct breastfeeding in-hospital was associated with higher odds of any breast milk feeding (adjusted odds ratios [AOR] 5.68, 95% CI [1.65-23.63]) and direct breastfeeding (AOR 8.19, 95% CI [2.99-24.91]) postdischarge; results were similar for any breast milk feeding in-hospital. Conclusions: Perinatal hospital care practices implemented early in the COVID-19 pandemic, specifically mother-infant separation and prevention of breast milk feeding initiation, were associated with adverse effects on breast milk feeding outcomes assessed up to 1 month postdischarge.


Subject(s)
Breast Feeding , COVID-19 , Aftercare , Breast Feeding/methods , COVID-19/epidemiology , Female , Hospitals , Humans , Infant , Infant, Newborn , Pandemics/prevention & control , Patient Discharge , Pregnancy , SARS-CoV-2
3.
Cell Rep ; 39(5): 110772, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508141

ABSTRACT

Vaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology enables characterization of mechanisms of action, these tools have yet to be applied to infants, who are at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms. We employ mass-spectrometry-based metabolomics of blood plasma to profile BCG-induced infant responses in Guinea-Bissau in vivo and the US in vitro. BCG-induced lysophosphatidylcholines (LPCs) correlate with both TLR-agonist- and purified protein derivative (PPD, mycobacterial antigen)-induced blood cytokine production in vitro, raising the possibility that LPCs contribute to BCG immunogenicity. Analysis of an independent newborn cohort from The Gambia demonstrates shared vaccine-induced metabolites, such as phospholipids and sphingolipids. BCG-induced changes to the plasma lipidome and LPCs may contribute to its immunogenicity and inform the development of early life vaccines.


Subject(s)
BCG Vaccine , Tuberculosis , Adjuvants, Immunologic , Humans , Infant , Infant, Newborn , Lipid Metabolism
4.
Clin Infect Dis ; 75(Suppl 1): S37-S45, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35535796

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with adverse maternal and neonatal outcomes, yet uptake of SARS-CoV-2 vaccines during pregnancy and lactation has been slow. As a result, millions of pregnant and lactating women and their infants remain susceptible to the virus. METHODS: We measured spike-specific immunoglobulin G (anti-S IgG) and immunoglobulin A (anti-S IgA) in serum and breastmilk (BM) samples from 3 prospective mother-infant cohorts recruited in 2 academic medical centers. The primary aim was to determine the impact of maternal SARS-CoV-2 immunization vs infection and their timing on systemic and mucosal immunity. RESULTS: The study included 28 mothers infected with SARS-CoV-2 in late pregnancy (INF), 11 uninfected mothers who received 2 doses of the BNT162b2 vaccine in the latter half of pregnancy (VAX-P), and 12 uninfected mothers who received 2 doses of BNT162b2 during lactation. VAX dyads had significantly higher serum anti-S IgG compared to INF dyads (P < .0001), whereas INF mothers had higher BM:serum anti-S IgA ratios compared to VAX mothers (P = .0001). Median IgG placental transfer ratios were significantly higher in VAX-P compared to INF mothers (P < .0001). There was a significant positive correlation between maternal and neonatal serum anti-S IgG after vaccination (r = 0.68, P = .013), but not infection. CONCLUSIONS: BNT161b2 vaccination in late pregnancy or lactation enhances systemic immunity through serum anti-S immunoglobulin, while SARS-CoV-2 infection induces mucosal over systemic immunity more efficiently through BM immunoglobulin production. Next-generation vaccines boosting mucosal immunity could provide additional protection to the mother-infant dyad. Future studies should focus on identifying the optimal timing of primary and/or booster maternal vaccination for maximal benefit.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Infant, Newborn , Lactation , Placenta , Pregnancy , Prospective Studies , SARS-CoV-2 , Vaccination
5.
Clin Infect Dis ; 75(Suppl 1): S130-S135, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35579506

ABSTRACT

Respiratory viral infections account for a large percentage of global disease and death. Respiratory syncytial virus is a seasonal virus affecting immunologically vulnerable populations, such as preterm newborns and young infants; however, its epidemiology has changed drastically during the coronavirus disease 2019 pandemic. In this perspective, we discuss the implications of coronavirus disease 2019 on respiratory syncytial virus seasonality patterns and mitigation efforts, as well as the urgent need for vaccination as a preventive tool.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Antibodies, Viral , COVID-19/epidemiology , Child , Humans , Infant , Infant, Newborn , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , SARS-CoV-2
7.
Clin Infect Dis ; 75(Suppl 1): S72-S80, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35439286

ABSTRACT

Older adults, defined as those ≥60 years of age, are a growing population vulnerable to infections including severe acute respiratory syndrome coronavirus 2. Although immunization is a key to protecting this population, immunosenescence can impair responses to vaccines. Adjuvants can increase the immunogenicity of vaccine antigens but have not been systematically compared in older adults. We conducted a scoping review to assess the comparative effectiveness of adjuvants in aged populations. Adjuvants AS01, MF59, AS03, and CpG-oligodeoxynucleotide, included in licensed vaccines, are effective in older human adults. A growing menu of investigational adjuvants, such as Matrix-M and CpG plus alum, showed promising results in early phase clinical trials and preclinical studies. Most studies assessed only 1 or 2 adjuvants and no study has directly compared >3 adjuvants among older adults. Enhanced preclinical approaches enabling direct comparison of multiple adjuvants including human in vitro modeling and age-specific animal models may derisk and accelerate vaccine development for older adults.


Subject(s)
COVID-19 , Vaccines , Adjuvants, Immunologic , Adjuvants, Vaccine , Aged , Animals , COVID-19/prevention & control , Humans , Vaccination
8.
J Perinatol ; 42(8): 1118-1125, 2022 08.
Article in English | MEDLINE | ID: mdl-34728823

ABSTRACT

BACKGROUND: Acid-suppressing medications (ASMs) are commonly prescribed in the neonatal intensive care unit (NICU), in particular among preterm infants, despite well-established adverse effects and little evidence to support efficacy. LOCAL PROBLEM: We sought to develop an initiative to reduce ASM exposure in our predominantly inborn level III NICU. Our specific aim was to reduce the number of nonindicated ASM prescriptions by 50% within a 12-month period. METHODS: Our multidisciplinary team developed an evidence-based guideline defining indications for ASM prescription in a level III NICU. Plan-do-study-act cycles included staff education, formal clinical practice guideline implementation, and implementation of standardized documentation tools in the electronic health record (EHR). Outcome measures were the number of nonindicated and total inpatient prescriptions started per month, duration of ASM prescription, and number of prescriptions continued after NICU discharge. Balancing measures were the number of patients started on thickened feeds and number of patients discharged home on nasogastric tube feeds. We used statistical process control and Pareto charts to assess these measures over a 12-month baseline period, 9-month implementation period, and 19-month post-implementation period spanning September 2017-December 2020. RESULTS: Nonindicated ASM prescriptions decreased from median 3 to 0 per month from the baseline to post-implementation period. Simultaneously, the median number of ASM prescriptions at discharge declined from 2 to 0 per month. The median duration of inpatient prescriptions declined from 23 to 7 days. Rates of patients started on thickened feeds and patients discharged home on nasogastric tube feeds remained stable throughout the study. CONCLUSION: Enactment of an evidence-based guideline was associated with a substantial decline in nonindicated ASM use in our NICU and a decline in duration of exposure to ASM's when prescribed. Our interventions proved effective in altering clinical practice and could be applied to other NICUs with similar patient populations aiming to reduce ASM use.


Subject(s)
Intensive Care Units, Neonatal , Quality Improvement , Humans , Infant , Infant, Newborn , Infant, Premature , Patient Discharge
10.
J Perinatol ; 41(11): 2674-2683, 2021 11.
Article in English | MEDLINE | ID: mdl-34226648

ABSTRACT

OBJECTIVE: We leveraged the Massachusetts perinatal quality collaborative (PQC) to address the COVID-19 pandemic. Our goals were to: (1) implement perinatal practices thought to reduce mother-to-infant SARS-CoV-2 transmission while limiting disruption of health-promoting practices and (2) do so without inequities attributable to race/ethnicity, language status, and social vulnerability. METHODS: Main outcomes were cesarean and preterm delivery, rooming-in, and breastfeeding. We examined changes over time overall and according to race/ethnicity, language status, and social vulnerability from 03/20-07/20 at 11 hospitals. RESULTS: Of 255 mothers with SARS-CoV-2, 67% were black or Hispanic and 47% were non-English speaking. Cesarean decreased (49% to 35%), while rooming-in (55% to 86%) and breastfeeding (53% to 72%) increased. These changes did not differ by race/ethnicity, language, or social vulnerability. CONCLUSIONS: Leveraging the Massachusetts PQC led to rapid changes in perinatal care during the COVID-19 crisis in a short time, representing a novel use of statewide PQC structures.


Subject(s)
COVID-19 , Female , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical , Pandemics , Pregnancy , SARS-CoV-2 , Social Vulnerability
11.
Front Immunol ; 12: 674334, 2021.
Article in English | MEDLINE | ID: mdl-34326836

ABSTRACT

Background: Newborns exhibit distinct immune responses and are at high risk of infection. Neonatal immunization with BCG, the live attenuated vaccine against tuberculosis (TB), is associated with broad protection against a range of unrelated pathogens, possibly reflecting vaccine-induced training of innate immune cells ("innate memory"). However, little is known regarding the impact of age on BCG-induced innate responses. Objective: Establish an age-specific human monocyte in vitro training platform to characterize and compare BCG-induced primary and memory cytokine responses and immunometabolic shifts. Design/Methods: Human neonatal and adult CD33-selected monocytes were stimulated for 24h with RPMI (control) or BCG (Danish strain) in 10% autologous serum, washed and cultured for 5 additional days, prior to re-stimulation with the TLR4 agonist LPS for another 24h. Supernatants were collected at Day 1 (D1) to measure primary innate responses and at Day 7 (D7) to assess memory innate responses by ELISA and multiplex cytokine and chemokine assays. Lactate, a signature metabolite increased during trained immunity, was measured by colorimetric assay. Results: Cytokine production by human monocytes differed significantly by age at D1 (primary, BCG 1:750 and 1:100 vol/vol, p<0.0001) and D7 (innate memory response, BCG 1:100 vol/vol, p<0.05). Compared to RPMI control, newborn monocytes demonstrated greater TNF (1:100, 1:10 vol/vol, p<0.01) and IL-12p40 (1:100 vol/vol, p<0.05) production than adult monocytes (1:100, p<0.05). At D7, while BCG-trained adult monocytes, as previously reported, demonstrated enhanced LPS-induced TNF production, BCG-trained newborn monocytes demonstrated tolerization, as evidenced by significantly diminished subsequent LPS-induced TNF (RPMI vs. BCG 1:10, p <0.01), IL-10 and CCL5 production (p<0.05). With the exception of IL-1RA production by newborn monocytes, BCG-induced monocyte production of D1 cytokines/chemokines was inversely correlated with D7 LPS-induced TNF in both age groups (p<0.0001). Compared to BCG-trained adult monocytes, newborn monocytes demonstrated markedly impaired BCG-induced production of lactate, a metabolite implicated in immune training in adults. Conclusions: BCG-induced human monocyte primary- and memory-innate cytokine responses were age-dependent and accompanied by distinct immunometabolic shifts that impact both glycolysis and training. Our results suggest that immune ontogeny may shape innate responses to live attenuated vaccines, suggesting age-specific approaches to leverage innate training for broad protection against infection.


Subject(s)
Activation, Metabolic/immunology , BCG Vaccine/immunology , Cytokines/immunology , Immunity, Innate/immunology , Monocytes/immunology , Activation, Metabolic/drug effects , Humans , Immunologic Memory/immunology , Infant, Newborn
12.
JAMA Netw Open ; 4(4): e217523, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33890989

ABSTRACT

Importance: The incidence of mother-to-newborn SARS-CoV-2 transmission appears low and may be associated with biological and social factors. However, data are limited on the factors associated with neonatal clinical or viral testing outcomes. Objective: To ascertain the percentage of neonates who were born to mothers with positive SARS-CoV-2 test results during the birth hospitalization, the clinical and sociodemographic factors associated with neonatal test result positivity, and the clinical and virological outcomes for newborns during hospitalization and 30 days after discharge. Design, Setting, and Participants: This multicenter cohort study included 11 academic or community hospitals in Massachusetts and mother-neonate dyads whose delivery and discharge occurred between March 1, 2020, and July 31, 2020. Eligible dyads were identified at each participating hospital through local COVID-19 surveillance and infection control systems. Neonates were born to mothers with positive SARS-CoV-2 test results within 14 days before to 72 hours after delivery, and neonates were followed up for 30 days after birth hospital discharge. Exposures: Hypothesized maternal risk factors in neonatal test result positivity included maternal COVID-19 symptoms, vaginal delivery, rooming-in practice, Black race or Hispanic ethnicity, and zip code-derived social vulnerability index. Delivery indicated by worsening maternal COVID-19 symptoms was hypothesized to increase the risk of adverse neonatal health outcomes. Main Outcomes and Measures: Primary outcomes for neonates were (1) positive SARS-CoV-2 test results, (2) indicators of adverse health, and (3) clinical signs and viral testing. Test result positivity was defined as at least 1 positive result on a specimen obtained by nasopharyngeal swab using a polymerase chain reaction-based method. Clinical and testing data were obtained from electronic medical records of nonroutine health care visits within 30 days after hospital discharge. Results: The cohort included 255 neonates (mean [SD] gestational age at birth, 37.9 [2.6] weeks; 62 [24.3%] with low birth weight or preterm delivery) with 250 mothers (mean [SD] age, 30.4 [6.3] years; 121 [48.4%] were of Hispanic ethnicity). Of the 255 neonates who were born to mothers with SARS-CoV-2 infection, 225 (88.2%) were tested for SARS-CoV-2 and 5 (2.2%) had positive results during the birth hospitalization. High maternal social vulnerability was associated with higher likelihood of neonatal test result positivity (adjusted odds ratio, 4.95; 95% CI, 1.53-16.01; P = .008), adjusted for maternal COVID-19 symptoms, delivery mode, and rooming-in practice. Adverse outcomes during hospitalization were associated with preterm delivery indicated by worsening maternal COVID-19 symptoms. Of the 151 newborns with follow-up data, 28 had nonroutine clinical visits, 7 underwent SARS-CoV-2 testing, and 1 had a positive result. Conclusions and Relevance: The findings emphasize the importance of both biological and social factors in perinatal SARS-CoV-2 infection outcomes. Newborns exposed to SARS-CoV-2 were at risk for both direct and indirect adverse health outcomes, supporting efforts of ongoing surveillance of the virus and long-term follow-up.


Subject(s)
COVID-19 Testing , COVID-19 , Delivery, Obstetric , Infant, Newborn, Diseases , Infectious Disease Transmission, Vertical/statistics & numerical data , Pregnancy Complications, Infectious , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Delivery, Obstetric/methods , Delivery, Obstetric/statistics & numerical data , Female , Gestational Age , Humans , Infant, Low Birth Weight , Infant, Newborn , Infant, Newborn, Diseases/diagnosis , Infant, Newborn, Diseases/epidemiology , Infant, Newborn, Diseases/virology , Male , Massachusetts/epidemiology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology , Risk Factors , SARS-CoV-2/isolation & purification , Socioeconomic Factors
13.
Front Immunol ; 11: 578505, 2020.
Article in English | MEDLINE | ID: mdl-33329546

ABSTRACT

Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases.


Subject(s)
Acute-Phase Proteins/metabolism , Child Development , Complement System Proteins/metabolism , Immune System/metabolism , Immunity, Innate , Immunoglobulins/blood , Proteome , Age Factors , Complement System Proteins/genetics , Humans , Immune System/growth & development , Immune System/immunology , Infant, Newborn , Proof of Concept Study , Protein Interaction Maps , Proteomics , RNA, Messenger/blood
14.
Neoreviews ; 21(12): e817-e827, 2020 12.
Article in English | MEDLINE | ID: mdl-33262208

ABSTRACT

Newborns, especially those born preterm, are at high risk for infection. Preterm birth rates appear to be increasing in most countries, with ∼15 million infants born preterm globally each year, corresponding to ∼11% of all deliveries. Importantly, the vulnerability of preterm infants to infection continues beyond the perinatal period, following them throughout childhood and adolescence, highlighting the long-lasting effects of infection on overall health and well-being. Other than access to clean drinking water and proper sewage systems, immunization is the most effective biomedical intervention to reduce early life infection. Nevertheless, a significant proportion of infants discharged on or after 2 months of age from the NICU remains unimmunized or underimmunized at that time. Despite being safe and effective, protective responses to immunization in early life are different from those in older individuals, in part because of the distinct immune system of newborns and young infants. The paradigms of the Bacille Calmette-Guérin, hepatitis B, and polio vaccines, the only immunizations currently routinely administered in the neonatal period, provide evidence that it is feasible to successfully administer vaccines via different routes of delivery; thus, production of sufficient vaccine-induced immunity leads to disease prevention in the newborn. Strategies such as maternal immunization, adjuvantation systems, leveraging trained immunity, and counseling caregivers can be used to enhance vaccine-induced specific and heterologous protection from infection and boost adherence to the recommended immunization schedule.


Subject(s)
Immunization Schedule , Infant, Premature , Vaccination , Humans , Infant, Newborn , Premature Birth
15.
Metabolites ; 10(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266347

ABSTRACT

Approaches to the identification of metabolites have progressed from early biochemical pathway evaluation to modern high-dimensional metabolomics, a powerful tool to identify and characterize biomarkers of health and disease. In addition to its relevance to classic metabolic diseases, metabolomics has been key to the emergence of immunometabolism, an important area of study, as leukocytes generate and are impacted by key metabolites important to innate and adaptive immunity. Herein, we discuss the metabolomic signatures and pathways perturbed by the activation of the human immune system during infection and vaccination. For example, infection induces changes in lipid (e.g., free fatty acids, sphingolipids, and lysophosphatidylcholines) and amino acid pathways (e.g., tryptophan, serine, and threonine), while vaccination can trigger changes in carbohydrate and bile acid pathways. Amino acid, carbohydrate, lipid, and nucleotide metabolism is relevant to immunity and is perturbed by both infections and vaccinations. Metabolomics holds substantial promise to provide fresh insight into the molecular mechanisms underlying the host immune response. Its integration with other systems biology platforms will enhance studies of human health and disease.

16.
Front Microbiol ; 11: 332, 2020.
Article in English | MEDLINE | ID: mdl-32218774

ABSTRACT

Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.

17.
Vaccine ; 38(9): 2229-2240, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32005538

ABSTRACT

BACKGROUND: Bacille Calmette-Guérin (BCG), the live attenuated tuberculosis vaccine, is manufactured under different conditions across the globe generating formulations that may differ in clinical efficacy. Innate immune recognition of live BCG contributes to immunogenicity suggesting that differences in BCG viability may contribute to divergent activity of licensed formulations. METHODS: We compared BCG-Denmark (DEN), -Japan (JPN), -India (IND), -Bulgaria (BUL) and -USA in vitro with respect to a) viability as measured by colony-forming units (CFU), mycobacterial membrane integrity, and RNA content, and b) cytokine/chemokine production in newborn cord and adult peripheral blood. RESULTS: Upon culture, relative growth was BCG-USA > JPN â‰« DEN > BUL = IND. BCG-IND and -BUL demonstrated >1000-fold lower growth than BCG-JPN in 7H9 medium and >10-fold lower growth in commercial Middlebrook 7H11 medium. BCG-IND demonstrated significantly decreased membrane integrity, lower RNA content, and weaker IFN-γ inducing activity in whole blood compared to other BCGs. BCG-induced whole blood cytokines differed significantly by age, vaccine formulation and concentration. BCG-induced cytokine production correlated with CFU, suggesting that mycobacterial viability may contribute to BCG-induced immune responses. CONCLUSIONS: Licensed BCG vaccines differ markedly in their content of viable mycobacteria possibly contributing to formulation-dependent activation of innate and adaptive immunity and distinct protective effects.


Subject(s)
BCG Vaccine/immunology , Immunogenicity, Vaccine , Microbial Viability , RNA, Bacterial/analysis , Adult , BCG Vaccine/genetics , Bulgaria , Denmark , Humans , Immunity, Innate , India , Infant, Newborn , Japan , Mycobacterium bovis/immunology , United States
18.
Pediatr Res ; 87(2): 399-405, 2020 01.
Article in English | MEDLINE | ID: mdl-31689710

ABSTRACT

The first days of postnatal life are energetically demanding as metabolic functions change dramatically to accommodate drastic environmental and physiologic transitions after birth. It is increasingly appreciated that metabolic pathways are not only crucial for nutrition but also play important roles in regulating inflammation and the host response to infection. Neonatal susceptibility to infection is increased due to a functionally distinct immune response characterized by high reliance on innate immune mechanisms. Interactions between metabolism and the immune response are increasingly recognized, as changes in metabolic pathways drive innate immune cell function and activation and consequently host response to pathogens. Moreover, metabolites, such as acetyl-coenzyme A (acetyl-CoA) and succinate have immunoregulatory properties and serve as cofactors for enzymes involved in epigenetic reprogramming or "training" of innate immune cells after an initial infectious exposure. Highly sensitive metabolomic approaches allow us to define alterations in metabolic signatures as they change during ontogeny and as perturbed by immunization or infection, thereby linking metabolic pathways to immune cell effector functions. Characterizing the ontogeny of immunometabolism will offer new opportunities to prevent, diagnose, and treat neonatal sepsis.


Subject(s)
Energy Metabolism , Immunity, Innate , Neonatal Sepsis/immunology , Neonatal Sepsis/metabolism , Animals , Bottle Feeding , Breast Feeding , Breast Milk Expression , Enteral Nutrition , Humans , Infant Formula , Infant, Newborn , Metabolomics , Milk, Human/immunology , Milk, Human/metabolism , Neonatal Sepsis/diagnosis , Neonatal Sepsis/therapy , Nutritive Value , Predictive Value of Tests , Prognosis
19.
Nat Commun ; 10(1): 1092, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862783

ABSTRACT

Systems biology can unravel complex biology but has not been extensively applied to human newborns, a group highly vulnerable to a wide range of diseases. We optimized methods to extract transcriptomic, proteomic, metabolomic, cytokine/chemokine, and single cell immune phenotyping data from <1 ml of blood, a volume readily obtained from newborns. Indexing to baseline and applying innovative integrative computational methods reveals dramatic changes along a remarkably stable developmental trajectory over the first week of life. This is most evident in changes of interferon and complement pathways, as well as neutrophil-associated signaling. Validated across two independent cohorts of newborns from West Africa and Australasia, a robust and common trajectory emerges, suggesting a purposeful rather than random developmental path. Systems biology and innovative data integration can provide fresh insights into the molecular ontogeny of the first week of life, a dynamic developmental phase that is key for health and disease.


Subject(s)
Child Development/physiology , Infant, Newborn/blood , Infant, Newborn/immunology , Chemokines/blood , Cohort Studies , Cytokines/blood , Gambia , Gene Expression Profiling , Humans , Immunophenotyping , Metabolomics , Papua New Guinea , Proteomics , Systems Biology
20.
Neonatology ; 113(2): 177-182, 2018.
Article in English | MEDLINE | ID: mdl-29248924

ABSTRACT

The epidemic of Zika virus (ZIKV) has resulted in a surge of newborns with microcephaly and brain abnormalities. In this report, we describe the first case, to our knowledge, of congenital Zika syndrome with concomitant critical congenital heart disease. The mother had a confirmed ZIKV infection in the first trimester of pregnancy. Fetal ultrasonography at 31 weeks of gestation revealed cerebral cortical calcifications and hypoplastic left heart syndrome. The severity of brain involvement was assessed by postnatal magnetic resonance imaging and echocardiogram, and palliative surgery was performed. The ethical dimensions of this infant's clinical management are discussed. ZIKV is known to affect neural progenitor cells, but whether it could have a tropism for other tissues remains unclear.


Subject(s)
Brain/pathology , Microcephaly/virology , Nervous System Malformations/virology , Pregnancy Complications, Infectious/virology , Zika Virus Infection/complications , Adult , Brain/diagnostic imaging , Female , Heart Diseases/etiology , Hospice Care , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , Microcephaly/diagnostic imaging , Microcephaly/etiology , Nervous System Malformations/diagnostic imaging , Pregnancy , Ultrasonography, Prenatal , Zika Virus/pathogenicity , Zika Virus Infection/congenital
SELECTION OF CITATIONS
SEARCH DETAIL
...