Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37698922

ABSTRACT

BACKGROUND: Oxidized apolipoprotein B (oxLDL) and oxidized ApoA-I (oxHDL) are proatherogenic. Their prognostic value for assessing high-risk plaques by coronary computed tomography angiography (CCTA) is missing. METHODS: In a prospective, observational study, 306 participants with cardiovascular disease (CVD) had extensive lipoprotein profiling. Proteomics analysis was performed on isolated oxHDL, and atherosclerotic plaque assessment was accomplished by quantitative CCTA. RESULTS: Patients were predominantly White, overweight men (58.5%) on statin therapy (43.5%). Increase in LDL-C, ApoB, small dense LDL-C (P < 0.001 for all), triglycerides (P = 0.03), and lower HDL function were observed in the high oxLDL group. High oxLDL associated with necrotic burden (NB; ß = 0.20; P < 0.0001) and fibrofatty burden (FFB; ß = 0.15; P = 0.001) after multivariate adjustment. Low oxHDL had a significant reverse association with these plaque characteristics. Plasma oxHDL levels better predicted NB and FFB after adjustment (OR, 2.22; 95% CI, 1.27-3.88, and OR, 2.80; 95% CI, 1.71-4.58) compared with oxLDL and HDL-C. Interestingly, oxHDL associated with fibrous burden (FB) change over 3.3 years (ß = 0.535; P = 0.033) when compared with oxLDL. Combined Met136 mono-oxidation and Trp132 dioxidation of HDL showed evident association with coronary artery calcium score (r = 0.786; P < 0.001) and FB (r = 0.539; P = 0.012) in high oxHDL, whereas Met136 mono-oxidation significantly associated with vulnerable plaque in low oxHDL. CONCLUSION: Our findings suggest that the investigated oxidized lipids are associated with high-risk coronary plaque features and progression over time in patients with CVD. CLINICALTRIALS: gov NCT01621594. FUNDING: National Heart, Lung, and Blood Institute at the NIH Intramural Research Program.


Subject(s)
Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Male , Apolipoprotein A-I , Apolipoproteins B , Cholesterol, LDL , Plaque, Atherosclerotic/diagnostic imaging , Prospective Studies
2.
J Clin Invest ; 133(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37471145

ABSTRACT

BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Lipoproteins, HDL , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Apolipoprotein A-I , Cholesterol, HDL , Phospholipids
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232786

ABSTRACT

ApoB-100 is a member of a large lipid transfer protein superfamily and is one of the main apolipoproteins found on low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) particles. Despite its clinical significance for the development of cardiovascular disease, there is limited information on apoB-100 structure. We have developed a novel method based on the "divide and conquer" algorithm, using PSIPRED software, by dividing apoB-100 into five subunits and 11 domains. Models of each domain were prepared using I-TASSER, DEMO, RoseTTAFold, Phyre2, and MODELLER. Subsequently, we used disuccinimidyl sulfoxide (DSSO), a new mass spectrometry cleavable cross-linker, and the known position of disulfide bonds to experimentally validate each model. We obtained 65 unique DSSO cross-links, of which 87.5% were within a 26 Å threshold in the final model. We also evaluated the positions of cysteine residues involved in the eight known disulfide bonds in apoB-100, and each pair was measured within the expected 5.6 Å constraint. Finally, multiple domains were combined by applying constraints based on detected long-range DSSO cross-links to generate five subunits, which were subsequently merged to achieve an uninterrupted architecture for apoB-100 around a lipoprotein particle. Moreover, the dynamics of apoB-100 during particle size transitions was examined by comparing VLDL and LDL computational models and using experimental cross-linking data. In addition, the proposed model of receptor ligand binding of apoB-100 provides new insights into some of its functions.


Subject(s)
Apolipoproteins B , Cysteine , Apolipoprotein B-100 , Apolipoproteins B/metabolism , Computer Simulation , Disulfides , Ligands , Lipoproteins, LDL/chemistry , Lipoproteins, VLDL , Models, Structural , Sulfoxides
4.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36180221

ABSTRACT

Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.


Subject(s)
Carrier Proteins , Retinal Rod Photoreceptor Cells , Animals , Female , Male , Mice , Light Signal Transduction , Mammals/metabolism , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Transducin/genetics , Transducin/metabolism , Carrier Proteins/metabolism
5.
J Physiol ; 600(3): 547-567, 2022 02.
Article in English | MEDLINE | ID: mdl-34837710

ABSTRACT

Mitochondrial adaptations are fundamental to differentiated function and energetic homeostasis in mammalian cells. But the mechanisms that underlie these relationships remain poorly understood. Here, we investigated organ-specific mitochondrial morphology, connectivity and protein composition in a model of extreme mammalian metabolism, the least shrew (Cryptotis parva). This was achieved through a combination of high-resolution 3D focused ion beam electron microscopy imaging and tandem mass tag mass spectrometry proteomics. We demonstrate that liver and kidney mitochondrial content are equivalent to the heart, permitting assessment of mitochondrial adaptations in different organs with similar metabolic demand. Muscle mitochondrial networks (cardiac and skeletal) are extensive, with a high incidence of nanotunnels - which collectively support the metabolism of large muscle cells. Mitochondrial networks were not detected in the liver and kidney as individual mitochondria are localized with sites of ATP consumption. This configuration is not observed in striated muscle, likely due to a homogeneous ATPase distribution and the structural requirements of contraction. These results demonstrate distinct, fundamental mitochondrial structural adaptations for similar metabolic demand that are dependent on the topology of energy utilization process in a mammalian model of extreme metabolism. KEY POINTS: Least shrews were studied to explore the relationship between metabolic function, mitochondrial morphology and protein content in different tissues. Liver and kidney mitochondrial content and enzymatic activity approaches that of the heart, indicating similar metabolic demand among tissues that contribute to basal and maximum metabolism. This allows an examination of mitochondrial structure and composition in tissues with similar maximum metabolic demands. Mitochondrial networks only occur in striated muscle. In contrast, the liver and kidney maintain individual mitochondria with limited reticulation. Muscle mitochondrial reticulation is the result of dense ATPase activity and cell-spanning myofibrils which require networking for adequate metabolic support. In contrast, liver and kidney ATPase activity is localized to the endoplasmic reticulum and basolateral membrane, respectively, generating a locally balanced energy conversion and utilization. Mitochondrial morphology is not driven by maximum metabolic demand, but by the cytosolic distribution of energy-utilizing systems set by the functions of the tissue.


Subject(s)
Muscle, Striated , Shrews , Animals , Energy Metabolism/physiology , Mitochondria/metabolism , Muscle, Skeletal/physiology , North America , Shrews/anatomy & histology
6.
PLoS One ; 16(11): e0255860, 2021.
Article in English | MEDLINE | ID: mdl-34847148

ABSTRACT

The molecular mechanisms underlying morphological diversity in retinal cell types are poorly understood. We have previously reported that several members of the Copine family of Ca-dependent membrane adaptors are expressed in Retinal Ganglion Cells and transcriptionally regulated by Brn3 transcription factors. Several Copines are enriched in the retina and their over-expression leads to morphological changes -formation of elongated processes-, reminiscent of neurites, in HEK293 cells. However, the role of Copines in the retina is largely unknown. We now investigate Cpne4, a Copine whose expression is restricted to Retinal Ganglion Cells. Over-expression of Cpne4 in RGCs in vivo led to formation of large varicosities on the dendrites but did not otherwise visibly affect dendrite or axon formation. Protein interactions studies using yeast two hybrid analysis from whole retina cDNA revealed two Cpne4 interacting proteins-Host Cell Factor 1 and Morn2. Mass Spectrometry analysis of retina lysate pulled down using Cpne4 or its vonWillebrand A domain showed 207 interacting proteins. A Gene Ontology analysis of the discovered proteins suggests that Cpne4 is involved in several metabolic and signaling pathways in the retina.


Subject(s)
Axons/metabolism , Calcium-Binding Proteins/metabolism , Retina/metabolism , Retinal Ganglion Cells/metabolism , Animals , Calcium-Binding Proteins/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Neurites/metabolism , Transfection
7.
Ann Rheum Dis ; 80(2): 209-218, 2021 02.
Article in English | MEDLINE | ID: mdl-32988843

ABSTRACT

OBJECTIVES: Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. METHODS: Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. RESULTS: Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. CONCLUSIONS: Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy.


Subject(s)
Granulocytes/pathology , Lupus Erythematosus, Systemic/immunology , Membrane Proteins/analysis , Neutrophils/pathology , Proteome/analysis , Case-Control Studies , Genetic Heterogeneity , Granulocytes/physiology , Humans , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/blood , Microvessels/metabolism , Neutrophils/physiology , Phosphorylation , Proteomics
8.
PLoS Genet ; 16(12): e1009259, 2020 12.
Article in English | MEDLINE | ID: mdl-33362196

ABSTRACT

Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice (Rabgef1-/-) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1-/- photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1-/- retina reveals altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype.


Subject(s)
Autophagy , Endocytosis , Guanine Nucleotide Exchange Factors/genetics , Neurogenesis , Photoreceptor Cells/metabolism , Retinal Degeneration/metabolism , Animals , Female , Guanine Nucleotide Exchange Factors/metabolism , Male , Mice , Mice, Inbred BALB C , Photoreceptor Cells/cytology , Retinal Degeneration/genetics , Transcriptome
9.
Sci Adv ; 6(44)2020 10.
Article in English | MEDLINE | ID: mdl-33115748

ABSTRACT

Formation of autoantibodies to carbamylated proteins (anti-CarP) is considered detrimental in the prognosis of erosive rheumatoid arthritis (RA). The source of carbamylated antigens and the mechanisms by which anti-CarP antibodies promote bone erosion in RA remain unknown. Here, we find that neutrophil extracellular traps (NETs) externalize carbamylated proteins and that RA subjects develop autoantibodies against carbamylated NET (cNET) antigens that, in turn, correlate with levels of anti-CarP. Transgenic mice expressing the human RA shared epitope (HLADRB1* 04:01) immunized with cNETs develop antibodies to citrullinated and carbamylated proteins. Furthermore, anti-carbamylated histone antibodies correlate with radiographic bone erosion in RA subjects. Moreover, anti-carbamylated histone-immunoglobulin G immune complexes promote osteoclast differentiation and potentiate osteoclast-mediated matrix resorption. These results demonstrate that carbamylated proteins present in NETs enhance pathogenic immune responses and bone destruction, which may explain the association between anti-CarP and erosive arthritis in RA.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Animals , Autoantibodies , Histones , Humans , Mice , Neutrophils/pathology , Protein Carbamylation
11.
Nutrients ; 12(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178279

ABSTRACT

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both shared and different cardiovascular effects, and commonly used fish oil supplements have considerably varied EPA/DHA ratios. AIMS: We compared the effects of fish oil supplements with different EPA/DHA ratios on lipoprotein metabolism. METHODS: In a double-blind, randomized cross-over study, normolipidemic adults (n = 30) consumed 12 g/day of EPA-rich (EPA/DHA: 2.3) or DHA-rich (EPA/DHA: 0.3) fish oil for 8-weeks, separated by an 8-week washout period. RESULTS: Both fish oil supplements similarly lowered plasma TG levels and TG-related NMR parameters versus baseline (p < 0.05). There were no changes in plasma cholesterol-related parameters due to either fish oil, although on-treatment levels for LDL particle number were slightly higher for DHA-rich oil compared with EPA-rich oil (p < 0.05). Both fish oil supplements similarly altered HDL subclass profile and proteome, and down regulated HDL proteins related to inflammation, with EPA-rich oil to a greater extent. Furthermore, EPA-rich oil increased apoM abundance versus DHA-rich oil (p < 0.05). CONCLUSIONS: Overall, fish oil supplements with varied EPA/DHA ratios had similar effects on total lipids/lipoproteins, but differences were observed in lipoprotein subfraction composition and distribution, which could impact on the use of EPA versus DHA for improving cardiovascular health.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Triglycerides/blood , Adult , Cross-Over Studies , Double-Blind Method , Female , Humans , Male
12.
Am J Physiol Renal Physiol ; 317(5): F1098-F1110, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31390267

ABSTRACT

Numerous candidate biomarkers in urine extracellular vesicles (EVs) have been described for kidney diseases, but none are yet in clinical use, possibly due to a lack of proper normalization. Proper normalization corrects for normal biological variation in urine flow rate or concentration, which can vary by over one order of magnitude. Here, we observed inter- and intra-animal variation in urine excretion rates of small EVs (<200 nm in diameter) in healthy rats as a series of six 4-h fractions. To visualize intra-animal variation, we normalized a small EV excretion rate to a peak excretion rate, revealing a circadian pattern for each rat. This circadian pattern was distinct from urine volume, urine albumin, urine creatinine, and urine albumin-to-creatinine ratio. Furthermore, urine small EV excretion was not significantly altered by sex, food/water deprivation, or ischemic acute kidney injury. Urine excretion of the exosomal/small EV marker protein tumor susceptibility gene 101 (TSG101) displayed a similar circadian pattern to urine small EV excretion; both measurements were highly correlated (R2 = 0.85), with an average stoichiometry of 10.0 molecules of TSG101/vesicle in healthy rats. The observed stoichiometry of TSG101/vesicle in rat urine translated to human spot urine samples (10.2 molecules/vesicle) and cultured kidney-derived cell lines (human embryonic kidney-293 and normal rat kidney 52E cells). Small EV number and its surrogate, TSG101 protein, can normalize for circadian variation when testing candidate biomarkers in small EVs. Just as creatinine has emerged as the customary normalization factor for liquid-phase urine biomarkers, vesicle number and its surrogate, molecules of exosome/small EV-associated TSG101, should be considered as viable, normalizing factors for small EV biomarkers.


Subject(s)
Circadian Rhythm/physiology , Extracellular Vesicles/physiology , Reperfusion Injury/urine , Animals , Biomarkers/urine , Cell Line , Female , Food Deprivation , Humans , Male , Rats , Rats, Sprague-Dawley , Water Deprivation
13.
Cardiovasc Res ; 115(2): 385-394, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30165576

ABSTRACT

Aims: Knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice abrogates mitochondrial Ca2+ uptake and permeability transition pore (PTP) opening. However, hearts from global MCU-KO mice are not protected from ischaemic injury. We aimed to investigate whether adaptive alterations occur in cell death signalling pathways in the hearts of global MCU-KO mice. Methods and results: First, we examined whether cell death may occur via an upregulation in necroptosis in MCU-KO mice. However, our results show that neither RIP1 inhibition nor RIP3 knockout afford protection against ischaemia-reperfusion injury in MCU-KO as in wildtype (WT) hearts, indicating that the lack of protection cannot be explained by upregulation of necroptosis. Instead, we have identified alterations in cyclophilin D (CypD) signalling in MCU-KO hearts. In the presence of a calcium ionophore, MCU-KO mitochondria take up calcium and do undergo PTP opening. Furthermore, PTP opening in MCU-KO mitochondria has a lower calcium retention capacity (CRC), suggesting that the calcium sensitivity of PTP is higher. Phosphoproteomics identified an increase in phosphorylation of CypD-S42 in MCU-KO. We investigated the interaction of CypD with the putative PTP component ATP synthase and identified an approximately 50% increase in this interaction in MCU-KO cardiac mitochondria. Mutation of the novel CypD phosphorylation site S42 to a phosphomimic reduced CRC, increased CypD-ATP synthase interaction by approximately 50%, and increased cell death in comparison to a phospho-resistant mutant. Conclusion: Taken together these data suggest that MCU-KO mitochondria exhibit an increase in phosphorylation of CypD-S42 which decreases PTP calcium sensitivity thus allowing activation of PTP in the absence of an MCU-mediated increase in matrix calcium.


Subject(s)
Calcium Channels/deficiency , Calcium/metabolism , Cyclophilins/metabolism , Mitochondria, Heart/enzymology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/deficiency , Myocardial Infarction/enzymology , Myocardial Reperfusion Injury/enzymology , Myocardium/enzymology , Animals , Calcium Channels/genetics , Cyclophilins/genetics , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
14.
JCI Insight ; 3(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30429362

ABSTRACT

Mono-ADP-ribosylation of an (arginine) protein catalyzed by ADP-ribosyltransferase 1 (ART1) - i.e., transfer of ADP-ribose from NAD to arginine - is reversed by ADP-ribosylarginine hydrolase 1 (ARH1) cleavage of the ADP-ribose-arginine bond. ARH1-deficient mice developed cardiomyopathy with myocardial fibrosis, decreased myocardial function under dobutamine stress, and increased susceptibility to ischemia/reperfusion injury. The membrane repair protein TRIM72 was identified as a substrate for ART1 and ARH1; ADP-ribosylated TRIM72 levels were greater in ARH1-deficient mice following ischemia/reperfusion injury. To understand better the role of TRIM72 and ADP-ribosylation, we used C2C12 myocytes. ARH1 knockdown in C2C12 myocytes increased ADP-ribosylation of TRIM72 and delayed wound healing in a scratch assay. Mutant TRIM72 (R207K, R260K) that is not ADP-ribosylated interfered with assembly of TRIM72 repair complexes at a site of laser-induced injury. The regulatory enzymes ART1 and ARH1 and their substrate TRIM72 were found in multiple complexes, which were coimmunoprecipitated from mouse heart lysates. In addition, the mono-ADP-ribosylation inhibitors vitamin K1 and novobiocin inhibited oligomerization of TRIM72, the mechanism by which TRIM72 is recruited to the site of injury. We propose that a mono-ADP-ribosylation cycle involving recruitment of TRIM72 and other regulatory factors to sites of membrane damage is critical for membrane repair and wound healing following myocardial injury.


Subject(s)
ADP-Ribosylation , Cardiomyopathies/metabolism , Carrier Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Wound Healing , ADP Ribose Transferases/metabolism , Animals , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cell Membrane/metabolism , Cell Membrane/pathology , Cell Movement , Dobutamine , Female , Fibrosis , Male , Membrane Proteins , Mice , Mice, Knockout , Myocardial Reperfusion Injury/pathology , N-Glycosyl Hydrolases/metabolism
15.
Nat Commun ; 8: 15560, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28504272

ABSTRACT

Sirt1 is an NAD+-dependent protein deacetylase that regulates many physiological functions, including stress resistance, adipogenesis, cell senescence and energy production. Sirt1 can be activated by energy deprivation, but the mechanism is poorly understood. Here, we report that Sirt1 is negatively regulated by ATP, which binds to the C-terminal domain (CTD) of Sirt1. ATP suppresses Sirt1 activity by impairing the CTD's ability to bind to the deacetylase domain as well as its ability to function as the substrate recruitment site. ATP, but not NAD+, causes a conformational shift to a less compact structure. Mutations that prevent ATP binding increase Sirt1's ability to promote stress resistance and inhibit adipogenesis under high-ATP conditions. Interestingly, the CTD can be attached to other proteins, thereby converting them into energy-regulated proteins. These discoveries provide insight into how extreme energy deprivation can impact Sirt1 activity and underscore the complex nature of Sirt1 structure and regulation.


Subject(s)
Adenosine Triphosphate/chemistry , Sirtuin 1/metabolism , Adipogenesis , Animals , Binding Sites , Deoxyglucose/chemistry , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice , Mutation , Plasmids , Protein Domains , Sirtuin 1/genetics , Transcription Factors/metabolism
16.
Sci Rep ; 7: 40445, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084425

ABSTRACT

Understanding mechanisms by which a population of beige adipocytes is increased in white adipose tissue (WAT) reflects a potential strategy in the fight against obesity and diabetes. Cyclic adenosine monophosphate (cAMP) is very important in the development of the beige phenotype and activation of its thermogenic program. To study effects of cyclic nucleotides on energy homeostatic mechanisms, mice were generated by targeted inactivation of cyclic nucleotide phosphodiesterase 3b (Pde3b) gene, which encodes PDE3B, an enzyme that catalyzes hydrolysis of cAMP and cGMP and is highly expressed in tissues that regulate energy homeostasis, including adipose tissue, liver, and pancreas. In epididymal white adipose tissue (eWAT) of PDE3B KO mice on a SvJ129 background, cAMP/protein kinase A (PKA) and AMP-activated protein kinase (AMPK) signaling pathways are activated, resulting in "browning" phenotype, with a smaller increases in body weight under high-fat diet, smaller fat deposits, increased ß-oxidation of fatty acids (FAO) and oxygen consumption. Results reported here suggest that PDE3B and/or its downstream signaling partners might be important regulators of energy metabolism in adipose tissue, and potential therapeutic targets for treating obesity, diabetes and their associated metabolic disorders.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/deficiency , Signal Transduction , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Energy Metabolism , Enzyme Activation , Epididymis/metabolism , Female , Gene Knockdown Techniques , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Obesity/metabolism , Obesity/prevention & control , Organelle Biogenesis , Phenotype , Thermogenesis , Weight Gain
17.
Cardiovasc Res ; 110(1): 96-106, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26907390

ABSTRACT

Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO.


Subject(s)
Cardiotoxicity/drug therapy , Hydrogen Sulfide/pharmacology , Nitric Oxide Donors/pharmacology , Sulfides/pharmacology , Animals , Ischemic Postconditioning , Mice, Inbred C57BL , NADPH Oxidases/metabolism , Nitric Oxide/metabolism
18.
Cardiovasc Res ; 106(2): 227-36, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25694588

ABSTRACT

Nitric oxide (NO) and protein S-nitrosylation (SNO) have been shown to play important roles in ischaemic preconditioning (IPC)-induced acute cardioprotection. The majority of proteins that show increased SNO following IPC are localized to the mitochondria, and our recent studies suggest that caveolae transduce acute NO/SNO cardioprotective signalling in IPC hearts. Due to the close association between subsarcolemmal mitochondria (SSM) and the sarcolemma/caveolae, we tested the hypothesis that SSM, rather than the interfibrillar mitochondria (IFM), are major targets for NO/SNO signalling derived from caveolae-associated eNOS. Following either control perfusion or IPC, SSM and IFM were isolated from Langendorff perfused mouse hearts, and SNO was analysed using a modified biotin switch method with fluorescent maleimide fluors. In perfusion control hearts, the SNO content was higher in SSM compared with IFM (1.33 ± 0.19, ratio of SNO content Perf-SSM vs. Perf-IFM), and following IPC SNO content significantly increased preferentially in SSM, but not in IFM (1.72 ± 0.17 and 1.07 ± 0.04, ratio of SNO content IPC-SSM vs. Perf-IFM, and IPC-IFM vs. Perf-IFM, respectively). Consistent with these findings, eNOS, caveolin-3, and connexin-43 were detected in SSM, but not in IFM, and IPC resulted in a further significant increase in eNOS/caveolin-3 levels in SSM. Interestingly, we did not observe an IPC-induced increase in SNO or eNOS/caveolin-3 in SSM isolated from caveolin-3(-/-) mouse hearts, which could not be protected with IPC. In conclusion, these results suggest that SSM may be the preferential target of sarcolemmal signalling-derived post-translational protein modification (caveolae-derived eNOS/NO/SNO), thus providing an important role in IPC-induced cardioprotection.


Subject(s)
Caveolin 3/metabolism , Ischemic Preconditioning, Myocardial , Mitochondria, Heart/metabolism , Myocardium/metabolism , Sarcolemma/metabolism , Animals , Caveolin 3/genetics , Ischemic Preconditioning, Myocardial/methods , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Protein Processing, Post-Translational/genetics
19.
J Biol Chem ; 290(4): 2466-76, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25505263

ABSTRACT

Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function.


Subject(s)
Chaperonin 10/metabolism , Fasting , Protein Folding , Sirtuin 3/metabolism , Acetylation , Animals , Chaperonin 10/genetics , Chromatography, Gel , Electrophoresis, Gel, Two-Dimensional , Fatty Acids/metabolism , Flow Cytometry , Gene Expression Regulation , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones , Mutagenesis , Oxygen/metabolism , Reactive Oxygen Species/metabolism
20.
Am J Physiol Heart Circ Physiol ; 306(6): H825-32, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441547

ABSTRACT

Previous studies have shown a role for nitric oxide and S-nitrosylation (SNO) in postconditioning (PostC), but specific SNO proteins and sites have not been identified in the myocardium after PostC. In this study, we examined SNO signaling in PostC using a Langendorff-perfused mouse heart model. After 20 min of equilibrium perfusion and 25 min of global ischemia, PostC was applied at the beginning of reperfusion with six cycles of 10 s of reperfusion and 10 s of ischemia. The total period of reperfusion was 90 min. Compared with the ischemia-reperfusion (I/R) control, PostC significantly reduced postischemic contractile dysfunction and infarct size. PostC-induced protection was blocked by treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) (10 µmol/l; a constitutive NO synthase inhibitor), but not by either ODQ (10 µmol/l, a highly selective soluble guanylyl cyclase inhibitor) or KT5823 (1 µmol/l, a specific protein kinase G inhibitor). Two biotin switch based methods, two dimensional CyDye-maleimide difference gel electrophoresis (2D CyDye-maleimide DIGE) and SNO-resin-assisted capture (SNO-RAC), were utilized to identify SNO-modified proteins and sites. Using 2D CyDye-maleimide DIGE analysis, PostC was found to cause a 25% or greater increase in SNO of a number of proteins, which was blocked by treatment with l-NAME in parallel with the loss of protection. Using SNO-RAC, we identified 77 unique proteins with SNO sites after PostC. These results suggest that NO-mediated SNO signaling is involved in PostC-induced cardioprotection and these data provide the first set of candidate SNO proteins in PostC hearts.


Subject(s)
Nitric Oxide/metabolism , Protein S/metabolism , Reperfusion Injury/metabolism , Animals , Carbazoles/pharmacology , Ischemic Postconditioning , Male , Mice , Mice, Inbred C57BL , Models, Animal , NG-Nitroarginine Methyl Ester/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL