Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Commun Biol ; 6(1): 846, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582968

ABSTRACT

A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.


Subject(s)
Microglia , Sex Characteristics , Mice , Male , Female , Animals , Gyrus Cinguli , Mice, Knockout , Social Behavior
3.
Nature ; 617(7961): 564-573, 2023 May.
Article in English | MEDLINE | ID: mdl-36996872

ABSTRACT

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Subject(s)
Adenovirus Infections, Human , Genomics , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , B-Lymphocytes/immunology , Gene Expression Profiling , Hepatitis/epidemiology , Hepatitis/immunology , Hepatitis/virology , Immunohistochemistry , Liver/immunology , Liver/virology , Proteomics , T-Lymphocytes/immunology
4.
Commun Biol ; 5(1): 1137, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302841

ABSTRACT

The septum is a key structure at the core of the forebrain that integrates inputs and relays information to other brain areas to support cognition and behaviours such as feeding and locomotion. Underlying these functions is a rich diversity of neuronal types and an intricate complexity of wiring across and within the septal region. We currently have very little understanding of how septal neuronal diversity emerges during development. Using transgenic mice expressing Cre in different subsets of telencephalic precursors we explored the origins of the three main neuronal types of the septal complex: GABAergic, cholinergic and glutamatergic neurons. We find that septal neurons originate from distinct neuroepithelial domains of the developing septum and are born at different embryonic time points. An exception to this is the GABAergic medial septal Parvalbumin-expressing population which is generated outside the septum from surrounding germinal zones. We identify the transcription factor BSX as being expressed in the developing glutamatergic neuron population. Embryonic elimination of BSX in the septum results in a reduction of septal glutamatergic cell numbers and a consequent deficit in locomotion. Further refinement of septal neuron diversity is needed to understand the multiple roles of septal neurons and their contribution to distinct behaviours.


Subject(s)
Neurons , Parvalbumins , Mice , Animals , Neurons/physiology , Prosencephalon , Mice, Transgenic
5.
Nat Commun ; 13(1): 5217, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064547

ABSTRACT

Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones.


Subject(s)
Cerebral Cortex , Interneurons , LIM-Homeodomain Proteins , Median Eminence , Transcription Factors , Animals , Cerebral Cortex/metabolism , DNA-Binding Proteins/metabolism , Interneurons/physiology , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Median Eminence/metabolism , Mice , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Proto-Oncogene Proteins/metabolism , Somatostatin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Cell Rep ; 35(11): 109249, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34133916

ABSTRACT

Cortical GABAergic interneurons are generated in large numbers in the ganglionic eminences and migrate into the cerebral cortex during embryogenesis. At early postnatal stages, during neuronal circuit maturation, autonomous and activity-dependent mechanisms operate within the cortex to adjust cell numbers by eliminating naturally occurring neuron excess. Here, we show that when cortical interneurons are generated in aberrantly high numbers-due to a defect in precursor cell proliferation during embryogenesis-extra parvalbumin interneurons persist in the postnatal mouse cortex during critical periods of cortical network maturation. Even though cell numbers are subsequently normalized, behavioral abnormalities remain in adulthood. This suggests that timely clearance of excess cortical interneurons is critical for correct functional maturation of circuits that drive adult behavior.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex/growth & development , Interneurons/pathology , Animals , Animals, Newborn , Cell Count , Homeodomain Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , PTEN Phosphohydrolase/metabolism , Parvalbumins/metabolism
7.
Stem Cell Reports ; 13(5): 793-802, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31631021

ABSTRACT

Oriens lacunosum-moleculare (O-LM) interneurons constitute 40% of hippocampal interneurons expressing Somatostatin (SST). Recent evidence has indicated a dual origin for these cells in the medial and caudal ganglionic eminences (MGE and CGE), with expression of Htr3a as a distinguishing factor. This is strikingly different from cortical SST interneurons that have a single origin within the MGE/preoptic area (POA). We reassessed the origin of hippocampal SST interneurons using a range of genetic lineage-tracing mice combined with single-cell transcriptomic analysis. We find a common origin for all hippocampal SST interneurons in NKX2-1-expressing progenitors of the telencephalic neuroepithelium and an MGE/POA-like transcriptomic signature for all SST clusters. This suggests that functional heterogeneity within the SST CA1 population cannot be attributed to a differential MGE/CGE genetic origin.


Subject(s)
CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/embryology , Interneurons/cytology , Somatostatin/analysis , Animals , CA1 Region, Hippocampal/metabolism , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Interneurons/metabolism , Mice , Mice, Transgenic , Preoptic Area/cytology , Preoptic Area/embryology , Preoptic Area/metabolism , Receptors, Serotonin, 5-HT3/analysis , Receptors, Serotonin, 5-HT3/genetics , Transcriptome
9.
Sci Rep ; 7(1): 79, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28250438

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.


Subject(s)
Dystrophin/genetics , Dystrophin/metabolism , Lentivirus/genetics , Muscular Dystrophy, Duchenne/genetics , Myoblasts, Skeletal/metabolism , Cells, Cultured , DNA Packaging , Genetic Therapy , Genetic Vectors/genetics , HEK293 Cells , HeLa Cells , Humans , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Myoblasts, Skeletal/pathology , Recombination, Genetic , Transduction, Genetic
10.
Sci Rep ; 7: 44775, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303972

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.


Subject(s)
Dystrophin/genetics , Dystrophin/therapeutic use , Genetic Therapy , Genetic Vectors/metabolism , Lentivirus/genetics , Cell Line , Child, Preschool , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Myoblasts/metabolism , Myoblasts/pathology , Templates, Genetic , Transduction, Genetic , Transgenes
11.
Front Neurosci ; 9: 103, 2015.
Article in English | MEDLINE | ID: mdl-25873856

ABSTRACT

The choroid plexus produces cerebrospinal fluid and plays an important role in brain homeostasis both pre and postnatally. In vitro studies have suggested that cells from adult choroid plexus have stem/progenitor cell-like properties. Our initial aim was to investigate whether such a cell population is present in vivo during development of the choroid plexus, focusing mainly on the chick choroid plexus. Cells expressing neural markers were indeed present in the choroid plexus of chick and also those of rodent and human embryos, both within their epithelium and mesenchyme. ß3-tubulin-positive cells with neuronal morphology could be detected as early as at E8 in chick choroid plexus and their morphological complexity increased with development. Whole mount immunochemistry demonstrated the presence of neurons throughout choroid plexus development and they appeared to be mainly catecholaminergic, as indicated by tyrosine-hydroxylase reactivity. The presence of cells co-labeling for BrdU and the neuroblast marker, doublecortin, in organotypic choroid plexus cultures supported the hypothesis that neurogenesis can occur from neural precursors within the developing choroid plexus. Furthermore, we found that extrinsic innervation is present in the developing choroid plexus, unlike previously suggested. Altogether, our data are consistent with the presence of neural progenitors within the choroid plexus, suggest that at least some of the choroid plexus neurons are born locally, and show for the first time that choroid plexus innervation occurs prenatally. Hence, we propose the existence of a complex neural regulatory network within the developing choroid plexus that may play a crucial role in modulating its function during development as well as throughout life.

SELECTION OF CITATIONS
SEARCH DETAIL
...