Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(24): eado4786, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875328

ABSTRACT

By taking advantage of the effects of solvent selectivity and topology on high-χ block copolymer (BCP) for self-assembly, network phases with high packing frustration can be formed in self-assembled polystyrene-b-polydimethylsiloxane (PS-b-PDMS). Apart from gyroid with trigonal structure and diamond with tetrahedral structure, a peculiar network phase with space group of [Formula: see text] (Frank-Kasper structure) can be found in six-arm star-block PS-b-PDMS as evidenced by small-angle x-ray scattering. Electron tomography results reveal the network phase with alternating connection of three and four struts. The observed phase behaviors suggest that the network formation is built from the bisectors of dispersive spheres in the Frank-Kasper phase, instead of building connections among them, and thus decipher the origins of complex phase formation due to the adaptive character of malleable mesoatoms.

2.
Gels ; 10(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667673

ABSTRACT

The increasing global concern over plastic waste and its environmental impact has led to a growing interest in the development of sustainable packaging alternatives. This study focuses on the innovative use of expired dairy products as a potential resource for producing edible packaging materials. Expired milk and yogurt were selected as the primary raw materials due to their protein and carbohydrate content. The extracted casein was combined with various concentrations of chitosan, glycerol, and squid ink, leading to the studied samples. Chitosan was chosen due to its appealing characteristics, including biodegradability, and film-forming properties, and casein was utilized for its superior barrier and film-forming properties, as well as its biodegradability and non-toxic nature. Glycerol was used to further improve the flexibility of the materials. The prepared hydrogels were characterized using various instrumental methods, and the findings reveal that the expired dairy-based edible packaging materials exhibited promising mechanical properties comparable to conventional plastic packaging and improved barrier properties with zero-oxygen permeability of the hydrogel membranes, indicating that these materials have the potential to effectively protect food products from external factors that could compromise quality and shelf life.

3.
Polymers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675048

ABSTRACT

Nowadays, increased food safety and decreased food waste are two of the major global interests. Self-healable active packaging materials are an attractive option to achieve such targets. This property is critical for the hygiene and the consumption appropriateness of the food. Polylactic acid is a very promising polymeric matrix that potentially could replace the widely used low-density polyethylene due to its biobased origin and its easy biodegradable nature. The main drawback of this polymeric matrix is its brittle, fragile nature. On the other hand, tetraethyl citrate is a biobased approved food additive which became an attractive option as a plasticizer for industries seeking alternative materials to replace the traditional petrochemically derived compounds. A novel biobased film exhibiting self-healing behavior suitable for food-active packaging was developed during this study. Polylactic acid's brittleness was reduced drastically by incorporating tetraethyl citrate, and a random cut on the original self-repairing film was fully healed after 120 s. The optimum concentration of tetraethyl citrate in the polylactic acid was around 15% v/w with a water/oxygen barrier close to the relevant of polylactic acid and low migration. According to the EC50 parameter, the antioxidant activity was 300% higher than the relevant of pure polylactic acid, while according to the thiobarbituric acid and heme iron parameters, the film resisted lipid oxidation and deterioration. Finally, the total viable count parameter indicates the strong antimicrobial activity of this sample.

4.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38133058

ABSTRACT

Carvacrol is well documented for its antibacterial and antioxidant effects. However, its high volatility has directed researchers toward nanoencapsulation technology according to bioeconomy and sustainability trends. This study examined and compared free carvacrol (FC), carvacrol microemulsion (MC), carvacrol microemulsion busted with chitosan (MMC), and carvacrol nanoemulsions (NC) as active coatings on extending minced pork meat shelf life at 4 ± 1 °C for 9 days, focusing on microbiological, physiochemical, and sensory characteristics. The research involved pre-characterizing droplet sizes, evaluating antioxidants, and determining antibacterial efficacy. The results demonstrated that NC with a 21 nm droplet size exhibited the highest antioxidant and antibacterial activity. All coatings succeeded in extending the preservation of fresh minced pork meat in comparison to the free carvacrol sample (FC). The NC coating showed the highest extension of minced pork meat preservation and maintained meat freshness for 9 days, with a lower TBARs of 0.736 mg MDA/Kg, and effectively reduced mesophilic, lactic acid, and psychotrophic bacterial counts more significantly by 1.2, 2, and 1.3 log, respectively, as compared to FC. Sensory assessments confirmed the acceptability of NC and MCC coatings. Overall, the carvacrol-based nanoemulsion can be considered a novel antioxidant and antimicrobial active coating due to its demonstrated higher efficacy in all the examined tests performed.

5.
Molecules ; 28(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959837

ABSTRACT

Biomass exploitation is a global trend due to the circular economy and the environmentally friendly spirit. Numerous applications are now based on the use of biomass-derived products. Hydrogen sulfide (H2S) is a highly toxic and environmentally hazardous gas which is emitted from various processes. Thus, the efficient removal of this toxic hazardous gas following cost-effective processes is an essential requirement. In this study, we present the synthesis and characterization of biomass-derived activated carbon/zinc oxide (ZnO@AC) composites from different biomass sources as potential candidates for H2S sorption. The synthesis involved a facile method for activated carbon production via pyrolysis and chemical activation of biomass precursors (spent coffee, Aloe-Vera waste leaves, and corncob). Activated carbon production was followed by the incorporation of zinc oxide nanoparticles into the porous carbon matrix using a simple melt impregnation method. The synthesized ZnO@AC composites were characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and nitrogen porosimetry. The H2S removal performance of the ZnO@AC composites was evaluated through sorption experiments using a handmade apparatus. Our findings demonstrate that the Aloe-Vera-, spent coffee-, and corncob-derived composites exhibit superior H2S sorption capacity up to 106 mgH2S/gads., 66 mgH2S/gads., and 47 mgH2S/gads., respectively.

6.
Polymers (Basel) ; 15(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959907

ABSTRACT

In this study, the use of anionic polymerization for the synthesis of living poly(dimethylsiloxane) or PDMS-Li+, as well as poly(2-vinylpyridine) or P2VP-Li+ homopolymers, and the subsequent use of chlorosilane chemistry in order for the two blocks to be covalently joined leading to PDMS-b-P2VP copolymers is proposed. High vacuum manipulations enabled the synthesis of well-defined materials with different molecular weights (Μ¯n, from 9.8 to 36.0 kg/mol) and volume fraction ratios (φ, from 0.15 to 0.67). The Μ¯n values, dispersity indices, and composition were determined through membrane/vapor pressure osmometry (MO/VPO), size exclusion chromatography (SEC), and proton nuclear magnetic resonance spectroscopy (1H NMR), respectively, while the thermal transitions were determined via differential scanning calorimetry (DSC). The morphological characterization results suggested that for common composition ratios, lamellar, cylindrical, and spherical phases with domain periodicities ranging from approximately 15 to 39 nm are formed. A post-polymerization chemical modification reaction to quaternize the nitrogen atom in some of the P2VP monomeric units in the copolymer with the highest P2VP content, and the additional characterizations through 1H NMR, infrared spectroscopy, DSC, and contact angle are reported. The synthesis, characterization, and quaternization of the copolymer structure are important findings toward the preparation of functional materials with enhanced properties suitable for various nanotechnology applications.

7.
Gels ; 9(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37998934

ABSTRACT

Chondroitin sulfate (ChS), chitosan (Chi), and fish gelatin (FG), which are byproducts of a fish-treatment small enterprise, were incorporated with glycerol (Gly) to obtain dense hydrogel membranes with reduced brittleness, candidates for dressing in wound healing applications. The mechanical properties of all samples were studied via Dynamic Mechanical Analysis (DMA) and tensile tests while their internal structure was characterized using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD) instruments. Their surface morphology was analyzed by ThermoGravimetric Analysis (TGA) method, while their water permeability was estimated via Water Vapor Transmission Rate (WVTR) measurements. Wettability and degradation rate measurements were also carried out. Characterization results indicated that secondary interactions between the natural polymers and the plasticizer create the hydrogel membranes. The samples were amorphous due to the high concentration of plasticizer and the amorphous nature of the natural polymers. The integration of ChS led to decreased decomposition temperature in comparison with the glycerol-free sample, and all the materials had dense structures. Finally, the in vitro endothelial cell attachment studies indicate that the hydrogel membranes successfully support the attachment and survival of primary on the hydrogel membranes and could be appropriate for external application in wound healing applications as dressings.

8.
Polymers (Basel) ; 15(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37447575

ABSTRACT

Polymers are materials that have constantly evolved from the beginning of their discovery until the present day [...].

9.
Foods ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37444330

ABSTRACT

Τhe replacement of food packaging additives and preservatives with bio-based antioxidant/antibacterial compounds has been a common practice in recent years following the trend of bioeconomy and nanotechnology. Such bio-additives are often enclosed in nanocarriers for a controlled release process. Following this trend in this work, a thymol (TO)-rich activated carbon (AC) nanohybrid was prepared and characterized physicochemically with various techniques. This TO@AC nanohybrid, along with the pure activated carbon, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. The codenames used in this paper were LDPE/xTO@AC and LDPE/xAC for the nanohybrid and the pure activated carbon, respectively. X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy measurements showed high dispersity of both the TO@AC nanohybrid and the pure AC in the LDPE matrix, resulting in enhanced mechanical properties. The active film with 15 wt.% of the TO@AC nanohybrid (LDPE/15TO@AC) exhibited a 230% higher water/vapor barrier and 1928% lower oxygen permeability than the pure LDPE film. For this active film, the highest antioxidant activity referred to the DPPH assay (44.4%), the lowest thymol release rate (k2 ≈ 1.5 s-1), and the highest antibacterial activity were recorded, resulting in a 2-day extension of fresh pork fillets' shelf-life.

10.
Environ Sci Technol ; 57(21): 8130-8138, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37194994

ABSTRACT

The durability of plastics in the marine environment has emerged as a crucial environmental issue. However, the contribution of several factors and the threshold point after which a plastic product generates secondary micro- and nanoplastics is still unclear. To investigate the interaction of environmental parameters with the physicochemical properties of polyethylene (PE) and polypropylene (PP) films in the marine environment, polyolefin films were subjected to weathering in emulated coastal and marine environments for 12 months, focusing on the relationship between radiation load, alteration on the surface, and subsequent generation of microplastics (MPs). The weight average molecular weight (Mw) was found to be strongly correlated with the generated particles and the Feret diameter, implying the generation of secondary microplastics at decreased Mw. A significant and strong relationship between the carbonyl index (CI) and the Feret diameter for PP films weathered on beach sand was identified. This CI-fragmentation relationship involves three sequential stages and suggests that spontaneous fragmentation occurs at CI values above 0.7.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/chemistry , Microplastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polypropylenes
11.
ACS Macro Lett ; 12(5): 570-576, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37053545

ABSTRACT

Herein, this work aims to directly visualize the morphological evolution of the controlled self-assembly of star-block polystyrene-block-polydimethylsiloxane (PS-b-PDMS) thin films via in situ transmission electron microscopy (TEM) observations. With an environmental chip, possessing a built-in metal wire-based microheater fabricated by the microelectromechanical system (MEMS) technique, in situ TEM observations can be conducted under low-dose conditions to investigate the development of film-spanning perpendicular cylinders in the block copolymer (BCP) thin films via a self-alignment process. Owing to the free-standing condition, a symmetric condition of the BCP thin films can be formed for thermal annealing under vacuum with neutral air surface, whereas an asymmetric condition can be formed by an air plasma treatment on one side of the thin film that creates an end-capped neutral layer. A systematic comparison of the time-resolved self-alignment process in the symmetric and asymmetric conditions can be carried out, giving comprehensive insights for the self-alignment process via the nucleation and growth mechanism.

12.
Antioxidants (Basel) ; 12(2)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36830080

ABSTRACT

Sustainability, the circular economy, and the "greenhouse" effect have led the food packaging industry to use naturally available bio-compounds. The integration of such compounds in packaging films increases food safety and extends food shelf-life. The development of an active/antioxidant packaging film based on the widely commercially used low-density polyethylene, natural zeolite, and Thymol, a natural extract from thyme oil, is presented in this work. The obtained active films were characterized using X-Ray Diffraction, Fourier-Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Differential Scanning Calorimetry techniques. The tensile strength, water-oxygen barrier properties, and total antioxidant activity were measured. Low-density polyethylene incorporated with Thymol@Natural Zeolite at a proportion of 15 wt% was the most promising material and was used as film to wrap-up pork fillets. The thiobarbituric acid (TBA) method and heme iron measurements indicated a delayed lipids oxidation using this film. A linear correlation between the TBA method and heme iron values seems to be established, which could result in a fast method to determine the degree of lipid oxidation in pork fillets. Finally, a two-stage diffusion process during Thymol release was observed, and the values of the diffusion coefficient was 2.09 × 10-7 and 1.21 × 10-8 cm2/s for each stage. The applied pseudo-second sorption model provided a rate constant k2 = 0.01647 (s-1). These results indicate the strong potential of such films to be used as food packaging materials free of E-number preservatives.

13.
Polymers (Basel) ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36850132

ABSTRACT

We report the synthesis of three (3) linear triblock terpolymers, two (2) of the ABC type and one (1) of the BAC type, where A, B and C correspond to three chemically incompatible blocks such as polystyrene (PS), poly(butadiene) of exclusively (~100% vinyl-type) -1,2 microstructure (PB1,2) and poly(dimethylsiloxane) (PDMS) respectively. Living anionic polymerization enabled the synthesis of narrowly dispersed terpolymers with low average molecular weights and different composition ratios, as verified by multiple molecular characterization techniques. To evaluate their self-assembly behavior, transmission electron microscopy and small-angle X-ray scattering experiments were conducted, indicating the effect of asymmetric compositions and interactions as well as inversed segment sequence on the adopted morphologies. Furthermore, post-polymerization chemical modification reactions such as hydroboration and oxidation were carried out on the extremely low molecular weight PB1,2 in all three terpolymer samples. To justify the successful incorporation of -OH groups in the polydiene segments and the preparation of polymeric brushes, various molecular, thermal, and surface analysis measurements were carried out. The synthesis and chemical modification reactions on such triblock terpolymers are performed for the first time to the best of our knowledge and constitute a promising route to design polymers for nanotechnology applications.

14.
Polymers (Basel) ; 15(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36679162

ABSTRACT

A new era is rising in food packaging and preservation, with a consequent focus on transition to "greener" and environmentally friendly techniques. The environmental problems that are emerging nowadays impose use of natural materials for food packaging applications, replacement of chemical preservatives with natural organic extractions, such as essential oils, and targeting of new achievements, such as further extension of food shelf-life. According to this new philosophy, most of the used materials for food packaging should be recyclable, natural or bio-based, and/or edible. The aim of this work was to investigate use and efficiency of a novel food packaging developed based on commercial LDPE polymer incorporated with natural material halloysite impregnated with natural extract of thyme oil. Moreover, a direct correlation between the stiff TBARS method and the easiest heme iron measurements method was scanned to test food lesions easier and faster. The result of this study was development of the LDPE/10TO@HNT film, which contains the optimum amount of a hybrid nanostructure and is capable to be used as an efficient active food packaging film. Furthermore, a linear correlation seems to connect the TBARS and heme iron measurements.

15.
Polymers (Basel) ; 14(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36501686

ABSTRACT

In this study the preparation of hybrid materials based on reduced graphene oxide (rGO) and conjugated copolymers is reported. By tuning the number and arrangement of thiophenes in the main chain (indacenothiophene or indacenothienothiophene) and the nature of the polymer acceptor (difluoro benzothiadiazole or diketopyrrolopyrrole) semiconducting copolymers were synthesized through Stille aromatic coupling and characterized to determine their molecular characteristics. The graphene oxide was synthesized using the Staudenmaier method and was further modified to reduced graphene oxide prior to structural characterization. Various mixtures with different rGO quantities and conjugated copolymers were prepared to determine the optoelectronic, thermal and morphological properties. An increase in the maximum absorbance ranging from 3 to 6 nm for all hybrid materials irrespective of the rGO concentration, when compared to the pristine conjugated copolymers, was estimated through the UV-Vis spectroscopy indicating a differentiation on the optical properties. Through voltammetric experiments the oxidation and reduction potentials were determined and the calculated HOMO and LUMO levels revealed a decrease on the electrochemical energy gap for low rGO concentrations. The study indicates the potential of the hybrid materials consisting of graphene oxide and high band gap conjugated copolymers for applications related to organic solar cells.

16.
Gels ; 8(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36547348

ABSTRACT

The concept of this study is the replacement of previous fossil-based techniques for food packaging and food shelf-life extension, with novel more green processes and materials following the spirit of circular economy and the global trend for environmentally positive fingerprints. A novel adsorption process to produce thymol-halloysite nanohybrids is presented in this work. The high dispersion of this thymol-halloysite nanostructure in chitosan biopolymer is one of the goals of this study. The incorporation of this biodegradable matrix with poly-vinyl-alcohol produced a very promising food-packaging film. Mechanical, water-oxygen barrier, antimicrobial, and antioxidant properties were measured. Transparency levels were also tested using a UV-vis instrument. Moreover, the developed films were tested in-vivo for the preservation and the extension of the shelf-life of kiwi fruits. In all cases, results indicated that the increased fraction of thymol from thyme oil significantly enhances the antimicrobial and antioxidant activity of the prepared chitosan-poly-vinyl- alcohol gel. The use of the halloysite increases the mechanical and water-oxygen barrier properties and leads to a control release process of thymol which extends the preservation and the shelf-life of kiwi fruits. Finally, the results indicated that the halloysite improves the properties of the chitosan/poly-vinyl-alcohol films, and the thymol makes them further advantageous.

17.
Micromachines (Basel) ; 13(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422383

ABSTRACT

In this study, 3D printing technology was exploited for the development of immobilized enzyme microreactors that could be used for biocatalytic processes in Deep Eutectic Solvent (DES)-based media. 3D-printed polylactic acid (PLA) microwell plates or tubular microfluidic reactors were modified with polyethylenimine (PEI) and lipase from Candida antarctica (CALB) was covalently immobilized in the interior of each structure. DESs were found to have a negligible effect on the activity and stability of CALB, and the system proved highly stable and reusable in the presence of DESs for the hydrolysis of p-nitrophenyl butyrate (p-NPB). A kinetic study under flow conditions revealed an enhancement of substrate accessibility in the presence of Betaine: Glycerol (Bet:Gly) DES, while the system was not severely affected by diffusion limitations. Incubation of microreactors in 100% Bet:Gly preserved the enzyme activity by 53% for 30 days of storage at 60 °C, while the buffer-stored sample had already been deactivated. The microfluidic enzyme reactor was efficiently used for the trans-esterification of ethyl ferulate (EF) with glycerol towards the production of glyceryl ferulate (GF), known for its antioxidant potential. The biocatalytic process under continuous flow conditions exhibited 23 times higher productivity than the batch reaction system. This study featured an effective and robust biocatalytic system with immobilized lipase that can be used both in hydrolytic and synthetic applications, while further optimization is expected to upgrade the microreactor system performance.

18.
Gels ; 8(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36135251

ABSTRACT

This study presents, the development of a green method to produce rich in thymol natural zeolite (TO@NZ) nanostructures. This material was used to prepare sodium-alginate/glycerol/xTO@NZ (ALG/G/TO@NZ) nanocomposite active films for the packaging of soft cheese to extend its shelf-life. Differential scanning calorimetry (DSC), X-ray analysis (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) instruments were used for the characterization of such nanostructures and films, to identify the thymol adsorbed amount, to investigate the thermal behaviour, and to confirm the dispersion of nanostructure powder into the polymer matrix. Water vapor transmission rate, oxygen permeation analyzer, tensile measurements, antioxidant measurements, and antimicrobial measurements were used to estimate the film's water and oxygen barrier, mechanical properties, nanostructure's nanoreinforcement activity, antioxidant and antimicrobial activity. The findings from the study revealed that ALG/G/TO@NZ nanocomposite film could be used as an active packaging film for foods with enhanced, mechanical properties, oxygen and water barrier, antioxidant and antimicrobial activity, and it is capable of extending food shelf-life.

19.
ACS Nano ; 16(8): 12686-12694, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35905494

ABSTRACT

This work aims to demonstrate a facile method for the controlled orientation of nanostructures of block copolymer (BCP) thin films. A simple diblock copolymer system, polystyrene-block-polydimethylsiloxane (PS-b-PDMS), is chosen to demonstrate vacuum-driven orientation for solving the notorious low-surface-energy problem of silicon-based BCP nanopatterning. By taking advantage of the pressure dependence of the surface tension of polymeric materials, a neutral air surface for the PS-b-PDMS thin film can be formed under a high vacuum degree (∼10-4 Pa), allowing the formation of the film-spanning perpendicular cylinders and lamellae upon thermal annealing. In contrast to perpendicular lamellae, a long-range lateral order for forming perpendicular cylinders can be efficiently achieved through the self-alignment mechanism for induced ordering from the top and bottom of the free-standing thin film.

20.
Nanomaterials (Basel) ; 12(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683702

ABSTRACT

The global turn from the linear to the circular economy imposes changes in common activities such as food packaging. The use of biodegradable materials such as polyvinyl alcohol, natural raw materials such as clays, and food byproducts such as chitosan to develop novel food packaging films attracts the interest of industrial and institutional research centers. In this study, novel hybrid nanostructures were synthesized via the growth of zinc oxide nanorods on the surface of two nanoclays. The obtained nanostructures were incorporated with chitosan/polyvinyl alcohol composite either as nanoreinforcement or as an active agent to develop packaging films. The developed films were characterized via XRD, FTIR, mechanical, water-vapor diffusion, water sorption, and oxygen permeability measurements. Antimicrobial activity measurements were carried out against four different pathogen microorganisms. XRD indicated the formation of an intercalated nanocomposite structure for both types of nanoclays. Furthermore, improved tensile, water/oxygen barrier, and antimicrobial properties were recorded for all films compared to the pure chitosan/polyvinyl alcohol film. Overall, the results indicated that the use of the bio-based developed films led to an extension of food shelf life and could be used as novel active food packaging materials. Among them, the most promising film was the 6% wt. ZnO@halloysite.

SELECTION OF CITATIONS
SEARCH DETAIL