Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(5): 112412, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37086403

ABSTRACT

Most cell types in multicellular organisms can perform multiple functions. However, not all functions can be optimally performed simultaneously by the same cells. Functions incompatible at the level of individual cells can be performed at the cell population level, where cells divide labor and specialize in different functions. Division of labor can arise due to instruction by tissue environment or through self-organization. Here, we develop a computational framework to investigate the contribution of these mechanisms to division of labor within a cell-type population. By optimizing collective cellular task performance under trade-offs, we find that distinguishable expression patterns can emerge from cell-cell interactions versus instructive signals. We propose a method to construct ligand-receptor networks between specialist cells and use it to infer division-of-labor mechanisms from single-cell RNA sequencing (RNA-seq) and spatial transcriptomics data of stromal, epithelial, and immune cells. Our framework can be used to characterize the complexity of cell interactions within tissues.


Subject(s)
Cell Communication , Cues , Gene Expression Profiling
2.
Nat Biotechnol ; 41(10): 1465-1473, 2023 10.
Article in English | MEDLINE | ID: mdl-36797494

ABSTRACT

Transferring annotations of single-cell-, spatial- and multi-omics data is often challenging owing both to technical limitations, such as low spatial resolution or high dropout fraction, and to biological variations, such as continuous spectra of cell states. Based on the concept that these data are often best described as continuous mixtures of cells or molecules, we present a computational framework for the transfer of annotations to cells and their combinations (TACCO), which consists of an optimal transport model extended with different wrappers to annotate a wide variety of data. We apply TACCO to identify cell types and states, decipher spatiomolecular tissue structure at the cell and molecular level and resolve differentiation trajectories using synthetic and biological datasets. While matching or exceeding the accuracy of specialized tools for the individual tasks, TACCO reduces the computational requirements by up to an order of magnitude and scales to larger datasets (for example, considering the runtime of annotation transfer for 1 M simulated dropout observations).


Subject(s)
Multiomics , Single-Cell Analysis , Data Curation
3.
Nat Commun ; 13(1): 4398, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906236

ABSTRACT

Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.


Subject(s)
Fetal Growth Retardation , Trophoblasts , Animals , Cell Communication/genetics , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fetus/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Mice , Pregnancy , Trophoblasts/metabolism
4.
Nat Methods ; 18(11): 1352-1362, 2021 11.
Article in English | MEDLINE | ID: mdl-34711971

ABSTRACT

Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.


Subject(s)
Brain/metabolism , Chromatin/genetics , Deep Learning , Gene Expression Regulation , Single-Cell Analysis/methods , Software , Transcriptome , Animals , Chromatin/chemistry , Chromatin/metabolism , Female , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , RNA-Seq , Regulatory Sequences, Nucleic Acid
5.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: mdl-34236046

ABSTRACT

Apolipoprotein B (ApoB) is the primary protein of chylomicrons, VLDLs, and LDLs and is essential for their production. Defects in ApoB synthesis and secretion result in several human diseases, including abetalipoproteinemia and familial hypobetalipoproteinemia (FHBL1). In addition, ApoB-related dyslipidemia is linked to nonalcoholic fatty liver disease (NAFLD), a silent pandemic affecting billions globally. Due to the crucial role of APOB in supplying nutrients to the developing embryo, ApoB deletion in mammals is embryonic lethal. Thus, a clear understanding of the roles of this protein during development is lacking. Here, we established zebrafish mutants for 2 apoB genes: apoBa and apoBb.1. Double-mutant embryos displayed hepatic steatosis, a common hallmark of FHBL1 and NAFLD, as well as abnormal liver laterality, decreased numbers of goblet cells in the gut, and impaired angiogenesis. We further used these mutants to identify the domains within ApoB responsible for its functions. By assessing the ability of different truncated forms of human APOB to rescue the mutant phenotypes, we demonstrate the benefits of this model for prospective therapeutic screens. Overall, these zebrafish models uncover what are likely previously undescribed functions of ApoB in organ development and morphogenesis and shed light on the mechanisms underlying hypolipidemia-related diseases.


Subject(s)
Apolipoproteins B , Embryonic Development/genetics , Fatty Liver , Intestines , Neovascularization, Pathologic , Animals , Apolipoproteins B/biosynthesis , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Endothelial Cells , Fatty Liver/embryology , Fatty Liver/genetics , Goblet Cells , Intestines/embryology , Intestines/pathology , Models, Biological , Mutation , Neovascularization, Pathologic/embryology , Neovascularization, Pathologic/genetics , Vascular Remodeling/genetics , Zebrafish , Zebrafish Proteins/genetics
6.
Curr Protoc Immunol ; 122(1): e53, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29969195

ABSTRACT

This article describes methods for isolating mouse monocytes and neutrophils, as well as in vitro protocols for measuring cell phagocytosis, migration, and polarization. The method employed here for the isolation of naive phagocytes overcomes many of the difficulties previously encountered concerning phagocyte activation. Three in vitro protocols are provided for the analysis of cell migration, one requiring no specialized equipment, one requiring a modified Boyden chamber, and the other employing a flow chamber, which measures cell adhesion, rolling, and migration. Three in vitro protocols to examine phagocytosis have been included in this updated version. Finally, a method is provided for imaging polarized cells by confocal microscopy. © 2018 by John Wiley & Sons, Inc.

7.
Nat Methods ; 14(10): 955-958, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846088

ABSTRACT

Single-nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but it does not provide high throughput. Here, we develop DroNc-seq: massively parallel sNuc-seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient, and unbiased classification of cell types, paving the way for systematic charting of cell atlases.


Subject(s)
RNA/genetics , Sequence Analysis, RNA/methods , 3T3 Cells , Animals , Biomarkers , HEK293 Cells , Humans , Mice , Principal Component Analysis , Single-Cell Analysis/methods , Transcription, Genetic
8.
Science ; 353(6302): 925-8, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27471252

ABSTRACT

Single-cell RNA sequencing (RNA-Seq) provides rich information about cell types and states. However, it is difficult to capture rare dynamic processes, such as adult neurogenesis, because isolation of rare neurons from adult tissue is challenging and markers for each phase are limited. Here, we develop Div-Seq, which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling of proliferating cells by 5-ethynyl-2'-deoxyuridine (EdU) to profile individual dividing cells. sNuc-Seq and Div-Seq can sensitively identify closely related hippocampal cell types and track transcriptional dynamics of newborn neurons within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq to identify and profile rare newborn neurons in the adult spinal cord, a noncanonical neurogenic region. sNuc-Seq and Div-Seq open the way for unbiased analysis of diverse complex tissues.


Subject(s)
Cell Nucleus/metabolism , Neurogenesis/genetics , Neurons/cytology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Animals , Cell Division/genetics , Deoxyuridine/analogs & derivatives , Deoxyuridine/analysis , Hippocampus/cytology , Hippocampus/metabolism , Isotope Labeling , Mice , Neurons/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Transcription, Genetic
9.
Dis Model Mech ; 8(3): 295-309, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25633982

ABSTRACT

Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.


Subject(s)
Apolipoproteins A/genetics , Eating/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Apolipoproteins A/metabolism , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Diet, High-Fat , Gene Expression Regulation, Developmental , Intestinal Mucosa/metabolism , Models, Animal , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , Zebrafish/embryology , Zebrafish Proteins/metabolism
10.
J Exp Med ; 210(12): 2611-25, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24166715

ABSTRACT

Adult neovascularization relies on the recruitment of monocytes to the target organ or tumor and functioning therein as a paracrine accessory. The exact origins of the recruited monocytes and the mechanisms underlying their plasticity remain unclear. Using a VEGF-based transgenic system in which genetically tagged monocytes are conditionally summoned to the liver as part of a VEGF-initiated angiogenic program, we show that these recruited cells are derived from the abundant pool of circulating Ly6C(hi) monocytes. Remarkably, however, upon arrival at the VEGF-induced organ, but not the naive organ, monocytes undergo multiple phenotypic and functional changes, endowing them with enhanced proangiogenic capabilities and, importantly, with a markedly increased capacity to remodel existing small vessels into larger conduits. Notably, monocytes do not differentiate into long-lived macrophages, but rather appear as transient accessory cells. Results from transfers of presorted subpopulations and a novel tandem transfer strategy ruled out selective recruitment of a dedicated preexisting subpopulation or onsite selection, thereby reinforcing active reprogramming as the underlying mechanism for improved performance. Collectively, this study uncovered a novel function of VEGF, namely, on-site education of recruited "standard" monocytes to become angiogenic and arteriogenic professional cells, a finding that may also lend itself for a better design of angiogenic therapies.


Subject(s)
Monocytes/physiology , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/physiology , Animals , Antigens, Ly/metabolism , Aorta, Thoracic/cytology , Aorta, Thoracic/growth & development , Apoptosis , Liver/blood supply , Liver/cytology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Nude , Mice, Transgenic , Monocytes/classification , Monocytes/cytology , Neovascularization, Pathologic , Paracrine Communication , Transcriptome , Vascular Endothelial Growth Factor A/genetics
12.
Nat Med ; 18(6): 967-73, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22581286

ABSTRACT

Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.


Subject(s)
Apolipoproteins B/physiology , Lipoproteins/physiology , Neovascularization, Physiologic , Vascular Endothelial Growth Factor Receptor-1/physiology , Amino Acid Sequence , Animals , Apolipoprotein C-II/physiology , Bacterial Proteins/genetics , Carrier Proteins/physiology , Cells, Cultured , Humans , Lipoproteins, LDL/metabolism , Luminescent Proteins/genetics , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Vascular Endothelial Growth Factor Receptor-1/analysis , Zebrafish
13.
Curr Protoc Immunol ; Chapter 14: 14.15.1-14.15.14, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20143313

ABSTRACT

This unit describes methods for isolating mouse monocytes and neutrophils, as well as in vitro protocols for measuring cell migration and polarization. The method employed here for the isolation of naïve phagocytes overcomes many of the difficulties previously encountered concerning phagocyte activation. Three in vitro protocols are provided for the analysis of cell migration, one requiring no specialized equipment, one requiring the modified Boyden chamber, and the other employing a flow chamber, which measures cell adhesion, rolling, and migration. Finally, a method is provided for imaging polarized cells by confocal microscopy.


Subject(s)
Cell Migration Assays, Leukocyte/methods , Cytological Techniques/methods , Monocytes/cytology , Neutrophils/cytology , Animals , Chemotaxis, Leukocyte , Immunomagnetic Separation/methods , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...