Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
mSystems ; : e0026324, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904376

ABSTRACT

In nature, bacteria often survive in a stationary state with low metabolic activity. Phages use the metabolic machinery of the host cell to replicate, and, therefore, their efficacy against non-dividing cells is usually limited. Nevertheless, it was previously shown that the Staphylococcus epidermidis phage SEP1 has the remarkable capacity to actively replicate in stationary-phase cells, reducing their numbers. Here, we studied for the first time the transcriptomic profiles of both exponential and stationary cells infected with SEP1 phage using RNA-seq to gain a better understanding of this rare phenomenon. We showed that SEP1 successfully takes over the transcriptional apparatus of both exponential and stationary cells. Infection was, however, delayed in stationary cells, with genes within the gp142-gp154 module putatively implicated in host takeover. S. epidermidis responded to SEP1 infection by upregulating three genes involved in a DNA modification system, with this being observed already 5 min after infection in exponential cells and later in stationary cells. In stationary cells, a significant number of genes involved in translation and RNA metabolic and biosynthetic processes were upregulated after 15 and 30 min of SEP1 infection in comparison with the uninfected control, showing that SEP1 activates metabolic and biosynthetic pathways necessary to its successful replication.IMPORTANCEMost phage-host interaction studies are performed with exponentially growing cells. However, this cell state is not representative of what happens in natural environments. Additionally, most phages fail to replicate in stationary cells. The Staphylococcus epidermidis phage SEP1 is one of the few phages reported to date to be able to infect stationary cells. Here, we unveiled the interaction of SEP1 with its host in both exponential and stationary states of growth at the transcriptomic level. The findings of this study provide valuable insights for a better implementation of phage therapy since phages able to infect stationary cells could be more efficient in the treatment of recalcitrant infections.

3.
Curr Opin Microbiol ; 77: 102419, 2024 02.
Article in English | MEDLINE | ID: mdl-38271748

ABSTRACT

In the last decade, powerful high-throughput sequencing approaches have emerged to analyse microbial transcriptomes at a global scale. However, to date, applications of these approaches to microbial viruses such as phages remain scarce. Tailoring these techniques to virus-infected bacteria promises to obtain a detailed picture of the underexplored RNA biology and molecular processes during infection. In addition, transcriptome study of stress and perturbations induced by phages in their infected bacterial hosts is likely to reveal new fundamental mechanisms of bacterial metabolism and gene regulation. Here, we provide references and blueprints to implement emerging transcriptomic approaches towards addressing transcriptome architecture, RNA-RNA and RNA-protein interactions, RNA modifications, structures and heterogeneity of transcription profiles in infected cells that will provide guides for future directions in phage-centric therapeutic applications and microbial synthetic biology.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Bacteria/genetics , Transcriptome , Gene Expression Regulation , RNA
4.
Commun Biol ; 7(1): 134, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280942

ABSTRACT

Oligomeric clusters of amyloid-ß (Aß) are one of the major biomarkers for Alzheimer's disease (AD). However, proficient methods to detect Aß-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aß-derived peptides on their surface preferentially interact with Aß-oligomers. When exposed to brain tissue isolated from APP/PS1-transgenic mice, these bacteriophages detect small-sized Aß-aggregates in hippocampus at an early age, prior to the occurrence of Aß-plaques. Similarly, the bacteriophages reveal the presence of such small Aß-aggregates in post-mortem hippocampus tissue of AD-patients. These results advocate bacteriophages displaying Aß-peptides as a convenient and low-cost tool to identify Aß-oligomers in post-mortem brain tissue of AD-model mice and AD-patients.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Mice , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Bacteriophage M13/metabolism , Mice, Transgenic , Brain/metabolism
5.
Methods Mol Biol ; 2734: 141-150, 2024.
Article in English | MEDLINE | ID: mdl-38066367

ABSTRACT

Biofilm formation, a strategy of bacterial survival, is a significant concern in different areas, including health, where infectious biofilms are very difficult to combat with conventional antimicrobial therapies. Bacteriophages, the viruses that infect bacteria, are promising agents to prevent and control biofilm-related infections. This chapter describes a series of standard procedures that can be used to study the potential of bacteriophages for biofilm control, from biofilm formation to bacteriophage treatment and evaluation of its efficacy.


Subject(s)
Bacteriophages , Biofilms , Anti-Bacterial Agents , Bacteria
6.
Methods Mol Biol ; 2734: 261-277, 2024.
Article in English | MEDLINE | ID: mdl-38066375

ABSTRACT

Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered toward a wide range of applications, including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes will be addressed: the bacteriophage recombineering of electroporated DNA (BRED) and the yeast-based phage-engineering platform.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Synthetic Biology , Genetic Engineering/methods , Genome, Viral , DNA
7.
Biofilm ; 6: 100135, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38078061

ABSTRACT

Background: The work on the ESGB guidelines for diagnosis and treatment of biofilm infections began in 2012 and the result was published in 2014. The guidelines have been and still are frequently cited in the literature proving its usefulness for people working with biofilm infections. At the ESGB Biofilm conference in Mallorca 2022 (Eurobiofilms2022) the board of the ESGB decided to evaluate the 2014-guidelines and relevant publications since 2014 based on a lecture given at the Eurobiofilms2022. Guideline methods: The Delphi method for working on production of guidelines and the current ESCMID rules for guidelines are presented. The criteria for evaluation of relevant literature are very strict and especially for treatment, most clinicians and regulatory authorities require convincing results from Level I (randomized controlled trials) publications to justify changes of treatments. The relevant new biofilm literature and the relevant biofilm presentations from the Eurobiofilms meetings and ECCMID conferences was used for evaluating the contemporary relevance of the ESGB 2014 guidelines. Diagnosis of biofilm infections: Several infectious diseases have been recognized as biofilm infections since 2014, but the diagnostic methods and therapeutic strategies are still the same as recommended in the 2014 ESGB guidelines which are summarized in this opinion paper. Treatment of biofilm infections: Some promising new in vitro and in vivo (animal experiments) observations and reports for therapy of biofilm infections are mentioned, but they still await clinical trials. Conclusion: The interim opinion at the present time (2022) is therefore, that the guidelines do not need revision now, but there is a need for survey articles discussing new methods of diagnosis and treatment of biofilm infections in order - hopefully - to give inspiration to conduct clinical trials which may lead to progress in diagnosis and treatment of patients with biofilm infections.

8.
Biofilm ; 6: 100147, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37662851

ABSTRACT

Chronic wound management is extremely challenging because of the persistence of biofilm-forming pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which are the prevailing bacterial species that co-infect chronic wounds. Phage therapy has gained an increased interest to treat biofilm-associated infections, namely when combined with antibiotics. Here, we tested the effect of gentamicin as a co-adjuvant of phages in a dual species-biofilm wound model formed on artificial dermis. The biofilm-killing capacity of the tested treatments was significantly increased when phages were combined with gentamicin and applied multiple times as multiple dose (three doses, every 8 h). Our results suggest that gentamycin is an effective adjuvant of phage therapy particularly when applied simultaneously with phages and in three consecutive doses. The multiple and simultaneous dose treatment seems to be essential to avoid bacterial resistance development to each of the antimicrobial agents.

9.
Eur J Clin Microbiol Infect Dis ; 42(8): 919-928, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407800

ABSTRACT

Bacteriophages (phages) are very promising biological agents for the prevention and control of bacterial biofilms. However, little is known about the parameters that can influence the efficacy of phages on biofilms. This systematic review provides a summary and analysis of the published data about the use of phages to control pre-formed biofilms in vitro, suggesting recommendations for future experiments in this area. A total of 68 articles, containing data on 605 experiments addressing the efficacy of phages to control biofilms in vitro were included, after a search conducted in Web of Science, Embase, and Medline (PubMed). The data collected from each experiment included information about biofilm growth conditions, phage characteristics, treatment conditions and biofilm reduction. In most cases, biofilms were formed in the surface of microtiter plates (82.5%); the median time for biofilm formation was 24 h, as is the median treatment duration. Quantification of biofilm biomass (52.6%), viable cells (25.5%) and metabolic activity (17.9%) were the most common biofilm assessment methods. Correlation analysis revealed that some phage parameters can influence the treatment outcome: higher phage concentrations were strongly associated with improved biofilm control, leading to higher levels of biofilm reduction, and phages with higher burst sizes and shorter latent periods seem to be the best candidates to control biofilms in vitro. However, the great variability of the methodologies used prompts the need for the development of standardized in vitro methodologies to characterize phage/biofilm interactions and to assess the efficacy of phages to control biofilms.


Subject(s)
Bacteriophages , Humans , Biofilms
10.
Appl Microbiol Biotechnol ; 107(11): 3621-3636, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37133800

ABSTRACT

Citrobacter koseri is an emerging Gram-negative bacterial pathogen, which causes urinary tract infections. We isolated and characterized a novel S16-like myovirus CKP1 (vB_CkoM_CkP1), infecting C. koseri. CkP1 has a host range covering the whole C. koseri species, i.e., all strains that were tested, but does not infect other species. Its linear 168,463-bp genome contains 291 coding sequences, sharing sequence similarity with the Salmonella phage S16. Based on surface plasmon resonance and recombinant green florescence protein fusions, the tail fiber (gp267) was shown to decorate C. koseri cells, binding with a nanomolar affinity, without the need of accessory proteins. Both phage and the tail fiber specifically bind to bacterial cells by the lipopolysaccharide polymer. We further demonstrate that CkP1 is highly stable towards different environmental conditions of pH and temperatures and is able to control C. koseri cells in urine samples. Altogether, CkP1 features optimal in vitro characteristics to be used both as a control and detection agent towards drug-resistant C. koseri infections. KEY POINTS: • CkP1 infects all C. koseri strains tested • CkP1 recognizes C. koseri lipopolysaccharide through its long tail fiber • Both phage CkP1 and its tail fiber can be used to treat or detect C. koseri pathogens.


Subject(s)
Bacteriophages , Citrobacter koseri , Bacteriophages/genetics , Citrobacter koseri/genetics , Lipopolysaccharides , Host Specificity
11.
RNA Biol ; 20(1): 235-247, 2023 01.
Article in English | MEDLINE | ID: mdl-37226433

ABSTRACT

Phage therapy is a promising adjunct therapeutic approach against bacterial multidrug-resistant infections, including Pseudomonas aeruginosa-derived infections. Nevertheless, the current knowledge about the phage-bacteria interaction within a human environment is limited. In this work, we performed a transcriptome analysis of phage-infected P. aeruginosa adhered to a human epithelium (Nuli-1 ATCC® CRL-4011™). To this end, we performed RNA-sequencing from a complex mixture comprising phage-bacteria-human cells at early, middle, and late infection and compared it to uninfected adhered bacteria. Overall, we demonstrated that phage genome transcription is unaltered by bacterial growth and phage employs a core strategy of predation through upregulation of prophage-associated genes, a shutdown of bacterial surface receptors, and motility inhibition. In addition, specific responses were captured under lung-simulating conditions, with the expression of genes related to spermidine syntheses, sulphate acquisition, biofilm formation (both alginate and polysaccharide syntheses), lipopolysaccharide (LPS) modification, pyochelin expression, and downregulation of virulence regulators. These responses should be carefully studied in detail to better discern phage-induced changes from bacterial responses against phage. Our results establish the relevance of using complex settings that mimics in vivo conditions to study phage-bacteria interplay, being obvious the phage versatility on bacterial cell invasion.


Subject(s)
Bacteriophages , Transcriptome , Humans , Animals , Pseudomonas aeruginosa/genetics , Bacteriophages/genetics , Predatory Behavior , Virulence/genetics , Gene Expression Profiling
12.
Curr Opin Virol ; 58: 101300, 2023 02.
Article in English | MEDLINE | ID: mdl-36586203

Subject(s)
Phage Therapy
13.
Sci Rep ; 12(1): 17785, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273096

ABSTRACT

Streptomycetes are ubiquitous soil bacteria. Here we report the complete and annotated genome sequence and characterization of Streptomyces phage Pablito, isolated from a soil sample in Haarlem, the Netherlands using Streptomyces lividans as host. This phage was able to infect a diverse range of Streptomyces strains, but none belonging to the sister genus Kitasatospora. Phage Pablito has double-stranded DNA with a genome length of 49,581 base pairs encoding 76 putative proteins, of which 26 could be predicted. The presence of a serine integrase protein indicated the lysogenic nature of phage Pablito. The phage remained stable over a wide range of temperatures (25-45 °C) and at pH ≥ 7.0, but lost infectivity at temperatures above 55 °C or when the pH dropped below 6.0. This newly isolated phage is closely related to Streptomyces phage Janus and Hank144 and considered a new species classified in the genus Janusvirus, within the subfamily Arquattrovirinae.


Subject(s)
Bacteriophages , Streptomyces , Bacteriophages/genetics , Streptomyces/genetics , DNA, Viral/genetics , Integrases , Soil , Serine
14.
NPJ Biofilms Microbiomes ; 8(1): 74, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163472

ABSTRACT

Lytic bacteriophages are considered safe for human consumption as biocontrol agents against foodborne pathogens, in particular in ready-to-eat foodstuffs. Phages could, however, evolve to infect different hosts when passing through the gastrointestinal tract (GIT). This underlines the importance of understanding the impact of phages towards colonic microbiota, particularly towards bacterial families usually found in the colon such as the Enterobacteriaceae. Here we propose in vitro batch fermentation as model for initial safety screening of lytic phages targeting Shiga toxin-producing Escherichia coli (STEC). As inoculum we used faecal material of three healthy donors. To assess phage safety, we monitored fermentation parameters, including short chain fatty acid production and gas production/intake by colonic microbiota. We performed shotgun metagenomic analysis to evaluate the outcome of phage interference with colonic microbiota composition and functional potential. During the 24 h incubation, concentrations of phage and its host were also evaluated. We found the phage used in this study, named E. coli phage vB_EcoS_Ace (Ace), to be safe towards human colonic microbiota, independently of the donors' faecal content used. This suggests that individuality of donor faecal microbiota did not interfere with phage effect on the fermentations. However, the model revealed that the attenuated STEC strain used as phage host perturbed the faecal microbiota as based on metagenomic analysis, with potential differences in metabolic output. We conclude that the in vitro batch fermentation model used in this study is a reliable safety screening for lytic phages intended to be used as biocontrol agents.


Subject(s)
Bacteriophages , Escherichia coli Infections , Microbiota , Shiga-Toxigenic Escherichia coli , Bacteriophages/genetics , Coliphages/genetics , Colon , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Fermentation , Humans , Shiga Toxin
15.
Int J Mol Sci ; 23(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35887231

ABSTRACT

Helicobacter pylori, a significant human gastric pathogen, has been demonstrating increased antibiotic resistance, causing difficulties in infection treatment. It is therefore important to develop alternatives or complementary approaches to antibiotics to tackle H. pylori infections, and (bacterio)phages have proven to be effective antibacterial agents. In this work, prophage isolation was attempted using H. pylori strains and UV radiation. One phage was isolated and further characterized to assess potential phage-inspired therapeutic alternatives to H. pylori infections. HPy1R is a new podovirus prophage with a genome length of 31,162 bp, 37.1% GC, encoding 36 predicted proteins, of which 17 were identified as structural. Phage particles remained stable at 37 °C, from pH 3 to 11, for 24 h in standard assays. Moreover, when submitted to an in vitro gastric digestion model, only a small decrease was observed in the gastric phase, suggesting that it is adapted to the gastric tract environment. Together with its other characteristics, its capability to suppress H. pylori population levels for up to 24 h post-infection at multiplicities of infection of 0.01, 0.1, and 1 suggests that this newly isolated phage is a potential candidate for phage therapy in the absence of strictly lytic phages.


Subject(s)
Bacteriophages , Helicobacter Infections , Helicobacter pylori , Anti-Bacterial Agents , Bacteriophages/genetics , Genomics , Helicobacter Infections/microbiology , Helicobacter Infections/therapy , Humans , Prophages/genetics
16.
Trends Microbiol ; 30(8): 707-709, 2022 08.
Article in English | MEDLINE | ID: mdl-35691880

ABSTRACT

Bacteria are protected against the immune system of their human hosts, as well as against predators such as phages, by expressing diverse surface carbohydrates. Some phages produce specialized depolymerases which can degrade those carbohydrates. Here, we discuss the biological role of depolymerases and how they can be exploited to develop new therapeutic strategies against pathogens.


Subject(s)
Bacteriophages , Communicable Diseases , Carbohydrates , Humans
17.
Curr Opin Virol ; 53: 101209, 2022 04.
Article in English | MEDLINE | ID: mdl-35240424

ABSTRACT

Bacterial biofilms are involved in many chronic and difficult-to-treat infections. Phage therapy against infectious biofilms is becoming a promising strategy, as suggested by the increasing number of publications demonstrating the efficacy of phages against in vitro formed biofilms. However, the translation between in vitro results to in vivo phage therapy outcome is not straightforward due to the complexity of phage-biofilm interactions in clinical contexts. Here, we provide a critical overview of the in vitro studies of phages for biofilm control of clinical pathogens, followed by the major outcomes and lessons learned from the recently reported case studies (between 2018 and 2021) of phage therapy against biofilm-related infections.


Subject(s)
Bacteriophages , Phage Therapy , Bacteria , Biofilms
18.
Antibiotics (Basel) ; 11(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35203767

ABSTRACT

Recently, phages have become popular as an alternative to antibiotics. This increased demand for phage therapy needs rapid and efficient methods to screen phages infecting specific hosts. Existing methods are time-consuming, and for clinical purposes, novel, quick, and reliable screening methods are highly needed. Flow cytometry (FC) allows a quick differentiation and enumeration of bacterial cell populations and has been used to assess in vitro the activity of antimicrobial compounds. In this work, we propose FC as a rapid and reliable method to assess the susceptibility of a bacterial population to phage infection. For that, the interaction of phages vB_PaeM_CEB_DP1 and vB_PaeP_PE3 with Pseudomonas aeruginosa PAO1 was characterized by FC. Synchronous infection assays were performed, and samples were collected at different time points and stained with SYTO BC and PI before analysis. Part of the collected samples was used to characterize the expression of early, middle, and late genes by qPCR. Both FC and qPCR results were correlated with phage propagation assays. Results showed that SYTO BC median fluorescence intensity (MFI) values increased in the first 25 min of PE3 and DP1 infection. The increase of fluorescence is due to the expression of phage genes observed by qPCR. Since SYTO BC MFI values increase with gene expression, it allows the determination of host susceptibility to a phage in a short period of time, avoiding false positives caused by lysis from without. In conclusion, this method may allow for a quick and high-throughput real-time screening of different phages to a specific host, which can be crucial for a quick phage selection in clinical practice.

19.
Microbiol Spectr ; 10(1): e0146621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196798

ABSTRACT

Bacterial pathogens are progressively adapting to current antimicrobial therapies with severe consequences for patients and global health care systems. This is critically underscored by the rise of methicillin resistant Staphylococcus aureus (MRSA) and other biofilm-forming staphylococci. Accordingly, alternative strategies have been explored to fight such highly multidrug resistant microorganisms, including antimicrobial photodynamic therapy (aPDT) and phage therapy. aPDT has the great advantage that it does not elicit resistance, while phage therapy allows targeting of specific pathogens. In the present study, we aimed to merge these benefits by conjugating the cell-binding domain (CBD3) of a Staphylococcus aureus phage endolysin to a photoactivatable silicon phthalocyanine (IRDye 700DX) for the development of a Staphylococcus-targeted aPDT approach. We show that, upon red-light activation, the resulting CBD3-700DX conjugate generates reactive oxygen species that effectively kill high loads of planktonic and biofilm-resident staphylococci, including MRSA. Furthermore, CBD3-700DX is readily internalized by mammalian cells, where it allows the targeted killing of intracellular MRSA upon photoactivation. Intriguingly, aPDT with CBD3-700DX also affects mammalian cells with internalized MRSA, but it has no detectable side effects on uninfected cells. Altogether, we conclude that CBD3 represents an attractive targeting agent for Staphylococcus-specific aPDT, irrespective of planktonic, biofilm-embedded, or intracellular states of the bacterium. IMPORTANCE Antimicrobial resistance is among the biggest threats to mankind today. There are two alternative antimicrobial therapies that may help to control multidrug-resistant bacteria. In phage therapy, natural antagonists of bacteria, lytic phages, are harnessed to fight pathogens. In antimicrobial photodynamic therapy (aPDT), a photosensitizer, molecular oxygen, and light are used to produce reactive oxygen species (ROS) that inflict lethal damage on pathogens. Since aPDT destroys multiple essential components in targeted pathogens, aPDT resistance is unlikely. However, the challenge in aPDT is to maximize target specificity and minimize collateral oxidative damage to host cells. We now present an antimicrobial approach that combines the best features of both alternative therapies, namely, the high target specificity of phages and the efficacy of aPDT. This is achieved by conjugating the specific cell-binding domain from a phage protein to a near-infrared photosensitizer. aPDT with the resulting conjugate shows high target specificity toward MRSA with minimal side effects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Endopeptidases/pharmacology , Photochemotherapy , Staphylococcal Infections/microbiology , Staphylococcus Phages/chemistry , Staphylococcus/drug effects , Staphylococcus/physiology , Animals , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Resistance, Multiple, Bacterial , Endopeptidases/chemistry , Endopeptidases/metabolism , Humans , Indoles/chemistry , Light , Organosilicon Compounds/chemistry , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Staphylococcal Infections/drug therapy , Staphylococcus/virology , Staphylococcus Phages/metabolism
20.
Bioengineered ; 13(7-12): 14947-14959, 2022.
Article in English | MEDLINE | ID: mdl-37105766

ABSTRACT

During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.


Subject(s)
DNA-Directed RNA Polymerases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Viral Proteins , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...