Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Vox Sang ; 113(7): 694-700, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30125050

ABSTRACT

BACKGROUND AND OBJECTIVES: Routine serologic D typing does not distinguish between weak D subtypes and partial D phenotypes. The goal of this study was to validate the performance of the ID RHD XT genotyping assay. MATERIAL AND METHODS: Previously serotyped samples for D antigen (n = 1000; 16% weak D serotyped donors) were analysed. The reference methods used for comparison were licensed serology tests for D antigen phenotype, and bidirectional sequencing (BDS) for weak D type confirmation and HPA-1 phenotype prediction. Discrepancies were solved with BDS and BLOODchip® Reference. RESULTS: There were no system failure, a 100% call rate and no inconclusive results. ID RHD XT correctly called all (88/88) weak D types 1, 2 and 3. Review of other 87 apparent discrepancies identified a small number of serology errors and showed that ID RHD XT correctly signalled the presence of other RHD variants which were further confirmed by BDS and BLOODchip® Reference. The predicted HPA-1 phenotype by ID RHD XT was 100% concordant with BDS. CONCLUSION: ID RHD XT genotype predictions for high-prevalence RhD negative and weak D types 1, 2 and 3 as well as for HPA-1a/HPA-1b antigens were accurate, which is of clinical significance in guiding transfusion needs.


Subject(s)
Genotyping Techniques/methods , Rh-Hr Blood-Group System/genetics , Alleles , Antigens, Human Platelet/genetics , Genotyping Techniques/standards , Humans , Integrin beta3
2.
Blood Transfus ; 16(2): 193-199, 2018 02.
Article in English | MEDLINE | ID: mdl-27893355

ABSTRACT

BACKGROUND: Traditionally, red blood cell antigens have been identified using serological methods, but recent advances in molecular biology have made the implementation of methods for genetic testing of most blood group antigens possible. The goal of this study was to validate the performance of the ID CORE XT blood group typing assay. MATERIALS AND METHODS: One thousand independent samples from donors, patients and neonates were collected from three research institutes in Spain and the Netherlands. DNA was extracted from EDTA-anticoagulated blood. The data were processed with the ID CORE XT to obtain the genotypes and the predicted blood group phenotypes, and results were compared to those obtained with well-established serological and molecular methods. All 1,000 samples were typed for major blood group antigens (C, c, E, e, K) and 371-830 samples were typed for other antigens depending on the rarity and availability of serology comparators. RESULTS: The incorrect call rate was 0%. Four "no calls" (rate: 0.014%) were resolved after repetition. The sensitivity of ID CORE XT for all phenotypes was 100% regarding serology. There was one discrepancy in E- antigen and 33 discrepancies in Fyb- antigen. After bidirectional sequencing, all discrepancies were resolved in favour of ID CORE XT (100% specificity). ID CORE XT detected infrequent antigens of Caucasians in the sample as well as rare allelic variants. DISCUSSION: In this evaluation performed in an extensive sample following the European Directive, the ID CORE XT blood genotyping assay performed as a reliable and accurate method for correctly predicting the genotype and phenotype of clinically relevant blood group antigens.


Subject(s)
Blood Group Antigens/genetics , Blood Grouping and Crossmatching/instrumentation , Blood Grouping and Crossmatching/methods , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Female , Humans , Male , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...