Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1294579, 2023.
Article in English | MEDLINE | ID: mdl-38149054

ABSTRACT

The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.

2.
NeuroImmune Pharm Ther ; 2(1): 63-69, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37027345

ABSTRACT

Objectives: Spatial-temporal biodistribution of antiretroviral drugs (ARVs) can now be achieved using MRI by utilizing chemical exchange saturation transfer (CEST) contrasts. However, the presence of biomolecules in tissue limits the specificity of current CEST methods. To overcome this limitation, a Lorentzian line-shape fitting algorithm was developed that simultaneously fits CEST peaks of ARV protons on its Z-spectrum. Case presentation: This algorithm was tested on the common first line ARV, lamivudine (3TC), that has two peaks resulting from amino (-NH2) and hydroxyl (-OH) protons in 3TC. The developed dual-peak Lorentzian function fitted these two peaks simultaneously, and used the ratio of -NH2 and -OH CEST contrasts as a constraint parameter to measure 3TC presence in brains of drug-treated mice. 3TC biodistribution calculated using the new algorithm was compared against actual drug levels measured using UPLC-MS/MS. In comparison to the method that employs the -NH2 CEST peak only, the dual-peak Lorentzian fitting algorithm showed stronger correlation with brain tissue 3TC levels, signifying estimation of actual drug levels. Conclusions: We concluded that 3TC levels can be extracted from confounding CEST effects of tissue biomolecules resulting in improved specificity for drug mapping. This algorithm can be expanded to measure a variety of ARVs using CEST MRI.

3.
Front Toxicol ; 5: 1113032, 2023.
Article in English | MEDLINE | ID: mdl-36896351

ABSTRACT

More than fifteen million women with the human immunodeficiency virus type-1 (HIV-1) infection are of childbearing age world-wide. Due to improved and affordable access to antiretroviral therapy (ART), the number of in utero antiretroviral drug (ARV)-exposed children has exceeded a million and continues to grow. While most recommended ART taken during pregnancy suppresses mother to child viral transmission, the knowledge of drug safety linked to fetal neurodevelopment remains an area of active investigation. For example, few studies have suggested that ARV use can be associated with neural tube defects (NTDs) and most notably with the integrase strand transfer inhibitor (INSTI) dolutegravir (DTG). After risk benefit assessments, the World Health Organization (WHO) made recommendations for DTG usage as a first and second-line preferred treatment for infected populations including pregnant women and those of childbearing age. Nonetheless, long-term safety concerns remain for fetal health. This has led to a number of recent studies underscoring the need for biomarkers to elucidate potential mechanisms underlying long-term neurodevelopmental adverse events. With this goal in mind, we now report the inhibition of matrix metalloproteinases (MMPs) activities by INSTIs as an ARV class effect. Balanced MMPs activities play a crucial role in fetal neurodevelopment. Inhibition of MMPs activities by INSTIs during neurodevelopment could be a potential mechanism for adverse events. Thus, comprehensive molecular docking testing of the INSTIs, DTG, bictegravir (BIC), and cabotegravir (CAB), against twenty-three human MMPs showed broad-spectrum inhibition. With a metal chelating chemical property, each of the INSTI were shown to bind Zn++ at the MMP's catalytic domain leading to MMP inhibition but to variable binding energies. These results were validated in myeloid cell culture experiments demonstrating MMP-2 and 9 inhibitions by DTG, BIC and CAB and even at higher degree than doxycycline (DOX). Altogether, these data provide a potential mechanism for how INSTIs could affect fetal neurodevelopment.

4.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558984

ABSTRACT

Children born to mothers, with or at risk, of human immunodeficiency virus type-1 (HIV-1) infection are on the rise due to affordable access of antiretroviral therapy (ART) to pregnant women or those of childbearing age. Each year, up to 1.3 million HIV-1-infected women on ART have given birth with recorded mother-to-child HIV-1 transmission rates of less than 1%. Despite this benefit, the outcomes of children exposed to antiretroviral drugs during pregnancy, especially pre- and post- natal neurodevelopment remain incompletely understood. This is due, in part, to the fact that pregnant women are underrepresented in clinical trials. This is underscored by any potential risks of neural tube defects (NTDs) linked, in measure, to periconceptional usage of dolutegravir (DTG). A potential association between DTG and NTDs was first described in Botswana in 2018. Incidence studies of neurodevelopmental outcomes associated with DTG, and other integrase strand transfer inhibitors (INSTIs) are limited as widespread use of INSTIs has begun only recently in pregnant women. Therefore, any associations between INSTI use during pregnancy, and neurodevelopmental abnormalities remain to be explored. Herein, United States Food and Drug Administration approved ARVs and their use during pregnancy are discussed. We provide updates on INSTI pharmacokinetics and adverse events during pregnancy together with underlying mechanisms which could affect fetal neurodevelopment. Overall, this review seeks to educate both clinical and basic scientists on potential consequences of INSTIs on fetal outcomes as a foundation for future scientific investigations.

5.
Nanomedicine ; 46: 102604, 2022 11.
Article in English | MEDLINE | ID: mdl-36113829

ABSTRACT

The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike glycoprotein of SARS-CoV-2 and the universal T-helper epitope PADRE. The epitopes were conjugated to short DNA probes and combined with a complementary scaffold strand, resulting in sequence-specific self-assembly. The immunogens were then formulated by conjugation to gold nanoparticles by three methods or by co-crystallization with epsilon inulin. BALB/C mice were immunized with each formulation, and the IgG immune responses and virus neutralizing titers were compared. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against wildtype SARS-CoV-2 and the Delta variant.


Subject(s)
COVID-19 , Metal Nanoparticles , Pregnancy Complications, Infectious , Viral Vaccines , Pregnancy , Mice , Animals , Female , Humans , SARS-CoV-2 , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/chemistry , Pandemics/prevention & control , COVID-19/prevention & control , Gold , Mice, Inbred BALB C , Antibodies, Neutralizing , Epitopes, B-Lymphocyte/chemistry , Antibodies, Viral
6.
Nat Commun ; 13(1): 3226, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680875

ABSTRACT

Ultra-long-acting integrase strand transfer inhibitors were created by screening a library of monomeric and dimeric dolutegravir (DTG) prodrug nanoformulations. This led to an 18-carbon chain modified ester prodrug nanocrystal (coined NM2DTG) with the potential to sustain yearly dosing. Here, we show that the physiochemical and pharmacokinetic (PK) formulation properties facilitate slow drug release from tissue macrophage depot stores at the muscle injection site and adjacent lymphoid tissues following single parenteral injection. Significant plasma drug levels are recorded up to a year following injection. Tissue sites for prodrug hydrolysis are dependent on nanocrystal dissolution and prodrug release, drug-depot volume, perfusion, and cell-tissue pH. Each affect an extended NM2DTG apparent half-life recorded by PK parameters. The NM2DTG product can impact therapeutic adherence, tolerability, and access of a widely used integrase inhibitor in both resource limited and rich settings to reduce HIV-1 transmission and achieve optimal treatment outcomes.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , Prodrugs , HIV Infections/drug therapy , Heterocyclic Compounds, 3-Ring , Humans , Oxazines/therapeutic use , Piperazines , Prodrugs/pharmacology , Pyridones/therapeutic use
7.
Nat Commun ; 12(1): 5458, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531390

ABSTRACT

Treatment and prevention of human immunodeficiency virus type one (HIV-1) infection was transformed through widespread use of antiretroviral therapy (ART). However, ART has limitations in requiring life-long daily adherence. Such limitations have led to the creation of long-acting (LA) ART. While nucleoside reverse transcriptase inhibitors (NRTI) remain the ART backbone, to the best of our knowledge, none have been converted into LA agents. To these ends, we transformed tenofovir (TFV) into LA surfactant stabilized aqueous prodrug nanocrystals (referred to as NM1TFV and NM2TFV), enhancing intracellular drug uptake and retention. A single intramuscular injection of NM1TFV, NM2TFV, or a nanoformulated tenofovir alafenamide (NTAF) at 75 mg/kg TFV equivalents to Sprague Dawley rats sustains active TFV-diphosphate (TFV-DP) levels ≥ four times the 90% effective dose for two months. NM1TFV, NM2TFV and NTAF elicit TFV-DP levels of 11,276, 1,651, and 397 fmol/g in rectal tissue, respectively. These results are a significant step towards a LA TFV ProTide.


Subject(s)
Adenine/analogs & derivatives , Alanine/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Organophosphates/pharmacology , Prodrugs/pharmacology , Tenofovir/analogs & derivatives , Tenofovir/pharmacology , Adenine/chemistry , Adenine/pharmacokinetics , Adenine/pharmacology , Alanine/chemistry , Alanine/pharmacokinetics , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Drug Stability , Female , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Male , Nanoparticles/chemistry , Organophosphates/chemistry , Organophosphates/pharmacokinetics , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats, Sprague-Dawley , Tenofovir/chemistry , Tenofovir/pharmacokinetics , Therapeutic Equivalency
8.
Mol Neurobiol ; 58(11): 5703-5721, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34390469

ABSTRACT

Dolutegravir (DTG) is a first-line antiretroviral drug (ARV) used in combination therapy for the treatment of human immunodeficiency virus type-1 (HIV-1) infection. The drug is effective, safe, and well tolerated. Nonetheless, concerns have recently emerged for its usage in pregnant women or those of child-bearing age. Notably, DTG-based ARV regimens have been linked to birth defects seen as a consequence of periconceptional usages. To this end, uncovering an underlying mechanism for DTG-associated adverse fetal development outcomes has gained clinical and basic research interest. We now report that DTG inhibits matrix metalloproteinases (MMPs) activities that could affect fetal neurodevelopment. DTG is a broad-spectrum MMPs inhibitor and binds to Zn++ at the enzyme's catalytic domain. Studies performed in pregnant mice show that DTG readily reaches the fetal central nervous system during gestation and inhibits MMP activity. Postnatal screenings of brain health in mice pups identified neuroinflammation and neuronal impairment. These abnormalities persist as a consequence of in utero DTG exposure. We conclude that DTG inhibition of MMPs activities during gestation has the potential to affect prenatal and postnatal neurodevelopment.


Subject(s)
Anti-Retroviral Agents/toxicity , Heterocyclic Compounds, 3-Ring/toxicity , Matrix Metalloproteinase Inhibitors/toxicity , Neural Tube Defects/chemically induced , Neurodevelopmental Disorders/chemically induced , Neuroinflammatory Diseases/chemically induced , Oxazines/toxicity , Piperazines/toxicity , Pyridones/toxicity , Animals , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/pharmacology , Brain/embryology , Brain/enzymology , Catalytic Domain/drug effects , Female , Gene Expression Profiling , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacology , Male , Matrix Metalloproteinase Inhibitors/pharmacokinetics , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Mice, Inbred C3H , Molecular Docking Simulation , Neural Tube Defects/embryology , Neuroimaging , Neuroinflammatory Diseases/embryology , Oxazines/pharmacokinetics , Oxazines/pharmacology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Placenta/chemistry , Pregnancy , Pyridones/pharmacokinetics , Pyridones/pharmacology , Tissue Distribution , Zinc/metabolism
9.
Nat Commun ; 12(1): 3453, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103484

ABSTRACT

A once every eight-week cabotegravir (CAB) long-acting parenteral is more effective than daily oral emtricitabine and tenofovir disoproxil fumarate in preventing human immunodeficiency virus type one (HIV-1) transmission. Extending CAB dosing to a yearly injectable advances efforts for the elimination of viral transmission. Here we report rigor, reproducibility and mechanistic insights for a year-long CAB injectable. Pharmacokinetic (PK) profiles of this nanoformulated CAB prodrug (NM2CAB) are affirmed at three independent research laboratories. PK profiles in mice and rats show plasma CAB levels at or above the protein-adjusted 90% inhibitory concentration for a year after a single dose. Sustained native and prodrug concentrations are at the muscle injection site and in lymphoid tissues. The results parallel NM2CAB uptake and retention in human macrophages. NM2CAB nanocrystals are stable in blood and tissue homogenates. The long apparent drug half-life follows pH-dependent prodrug hydrolysis upon slow prodrug nanocrystal dissolution and absorption. In contrast, solubilized prodrug is hydrolyzed in hours in plasma and tissues from multiple mammalian species. No toxicities are observed in animals. These results affirm the pharmacological properties and extended apparent half-life for a nanoformulated CAB prodrug. The report serves to support the mechanistic design for drug formulation safety, rigor and reproducibility.


Subject(s)
Drug Liberation , Lipids/chemistry , Nanoparticles/chemistry , Prodrugs/pharmacology , Pyridones/pharmacokinetics , Animals , Drug Compounding , Endocytosis , Humans , Kinetics , Male , Mice, Inbred BALB C , Pyridones/administration & dosage , Pyridones/blood , Rats, Sprague-Dawley , Reproducibility of Results , Tissue Distribution
10.
AIDS ; 35(11): 1733-1741, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34049358

ABSTRACT

OBJECTIVE: Antiretroviral drug theranostics facilitates the monitoring of biodistribution and efficacy of therapies designed to target HIV type-1 (HIV-1) reservoirs. To this end, we have now deployed intrinsic drug chemical exchange saturation transfer (CEST) contrasts to detect antiretroviral drugs within the central nervous system (CNS). DESIGN AND METHODS: CEST effects for lamivudine (3TC) and emtricitabine (FTC) were measured by asymmetric magnetization transfer ratio analyses. The biodistribution of 3TC in different brain sub-regions of C57BL/6 mice treated with lipopolysaccharides was determined using MRI. CEST effects of 3TC protons were quantitated by Lorentzian fitting analysis. 3TC levels in plasma and brain regions were measured using ultraperformance liquid chromatography tandem mass spectrometry to affirm the CEST test results. RESULTS: CEST effects of the hydroxyl and amino protons in 3TC and FTC linearly correlated to drug concentrations. 3TC was successfully detected in vivo in brain sub-regions by MRI. The imaging results were validated by measurements of CNS drug concentrations. CONCLUSION: CEST contrasts can be used to detect antiretroviral drugs using MRI. Such detection can be used to assess spatial--temporal drug biodistribution. This is most notable within the CNS where drug biodistribution may be more limited with the final goal of better understanding antiretroviral drug-associated efficacy and potential toxicity.


Subject(s)
HIV Infections , Pharmaceutical Preparations , Animals , Brain/diagnostic imaging , HIV Infections/drug therapy , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Tissue Distribution
11.
Nat Mater ; 19(8): 910-920, 2020 08.
Article in English | MEDLINE | ID: mdl-32341511

ABSTRACT

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.


Subject(s)
Anti-Retroviral Agents/metabolism , Nanostructures/chemistry , Prodrugs/chemistry , Prodrugs/metabolism , Pyridones/metabolism , Animals , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/toxicity , Biological Transport , Delayed-Action Preparations , Drug Compounding , Drug Interactions , Drug Stability , Mice , Pyridones/pharmacology , Pyridones/toxicity
12.
Mol Pharm ; 17(1): 155-166, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31742407

ABSTRACT

Antiretroviral therapy (ART) has improved the quality of life in patients infected with HIV-1. However, complete viral suppression within anatomical compartments remains unattainable. This is complicated by adverse side effects and poor adherence to lifelong therapy leading to the emergence of viral drug resistance. Thus, there is an immediate need for cellular and tissue-targeted long-acting (LA) ART formulations. Herein, we describe two LA prodrug formulations of darunavir (DRV), a potent antiretroviral protease inhibitor. Two classes of DRV prodrugs, M1DRV and M2DRV, were synthesized as lipophilic and hydrophobic prodrugs and stabilized into aqueous suspensions designated NM1DRV and NM2DRV. The formulations demonstrated enhanced intracellular prodrug levels with sustained drug retention and antiretroviral activities for 15 and 30 days compared to native DRV formulation in human monocyte-derived macrophages. Pharmacokinetics tests of NM1DRV and NM2DRV administered to mice demonstrated sustained drug levels in blood and tissues for 30 days. These data, taken together, support the idea that LA DRV with sustained antiretroviral responses through prodrug nanoformulations is achievable.


Subject(s)
Darunavir/administration & dosage , HIV Protease Inhibitors/administration & dosage , Prodrugs/administration & dosage , Prodrugs/chemical synthesis , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cell Survival/drug effects , Chromatography, Liquid , Darunavir/chemical synthesis , Darunavir/chemistry , Darunavir/pharmacokinetics , Drug Resistance, Viral/drug effects , HIV Protease Inhibitors/pharmacokinetics , HIV-1/drug effects , HIV-1/enzymology , Humans , Macrophages/drug effects , Macrophages/ultrastructure , Macrophages/virology , Male , Mice , Mice, Inbred BALB C , Microscopy, Electron , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats , Tandem Mass Spectrometry
13.
Biomaterials ; 223: 119476, 2019 12.
Article in English | MEDLINE | ID: mdl-31525692

ABSTRACT

A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/drug therapy , Lamivudine/administration & dosage , Macrophages/drug effects , Monocytes/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , Cells, Cultured , HIV-1 , Humans , Lymph Nodes/drug effects , Magnetic Resonance Spectroscopy , Mice , Nanomedicine/methods , Nanoparticles/chemistry , Prodrugs , Rabbits , Rats , Rats, Sprague-Dawley , Spleen/drug effects
14.
Int J Nanomedicine ; 14: 6231-6247, 2019.
Article in English | MEDLINE | ID: mdl-31496683

ABSTRACT

PURPOSE: A palmitoylated prodrug of emtricitabine (FTC) was synthesized to extend the drug's half-life, antiretroviral activities and biodistribution. METHODS: A modified FTC prodrug (MFTC) was synthesized by palmitoyl chloride esterification. MFTC's chemical structure was evaluated by nuclear magnetic resonance. The created hydrophobic prodrug nanocrystals were encased into a poloxamer surfactant and the pharmacokinetics (PK), biodistribution and antiretroviral activities of the nanoformulation (NMFTC) were assessed. The conversion of MFTC to FTC triphosphates was evaluated. RESULTS: MFTC coated with poloxamer formed stable nanocrystals (NMFTC). NMFTC demonstrated an average particle size, polydispersity index and zeta potential of 350 nm, 0.24 and -20 mV, respectively. Drug encapsulation efficiency was 90%. NMFTC was readily taken up by human monocyte-derived macrophages yielding readily detected intracellular FTC triphosphates and an extended PK profile. CONCLUSION: NMFTC shows improved antiretroviral activities over native FTC. This is coordinate with its extended apparent half-life. The work represents an incremental advance in the development of a long-acting FTC formulation.


Subject(s)
Drug Compounding , Emtricitabine/pharmacology , Nanoparticles/chemistry , Prodrugs/pharmacology , Animals , Anti-Retroviral Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Emtricitabine/blood , Emtricitabine/chemical synthesis , Emtricitabine/chemistry , Humans , Kinetics , Macrophages/drug effects , Male , Nanoparticles/ultrastructure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Proton Magnetic Resonance Spectroscopy , Rats, Sprague-Dawley
15.
J Control Release ; 311-312: 201-211, 2019 10.
Article in English | MEDLINE | ID: mdl-31491432

ABSTRACT

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.


Subject(s)
Anti-HIV Agents/administration & dosage , Nanoparticles/administration & dosage , Prodrugs/administration & dosage , Rilpivirine/administration & dosage , Animals , Anti-HIV Agents/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , HIV-1/drug effects , Humans , Macaca mulatta , Macrophages/metabolism , Male , Mice, Inbred BALB C , Prodrugs/pharmacokinetics , Rilpivirine/pharmacokinetics , Tissue Distribution
16.
Biomaterials ; 222: 119441, 2019 11.
Article in English | MEDLINE | ID: mdl-31472458

ABSTRACT

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.


Subject(s)
Anti-Retroviral Agents/chemistry , Anti-Retroviral Agents/chemical synthesis , Emtricitabine/chemistry , Prodrugs/chemistry , Prodrugs/chemical synthesis , Amides/chemistry , Animals , Humans , Male , Phosphoric Acids/chemistry , Poloxamer/chemistry , Polyphosphates/chemistry , Rats , Rats, Sprague-Dawley
17.
Nat Commun ; 10(1): 2753, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266936

ABSTRACT

Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.


Subject(s)
Anti-HIV Agents/administration & dosage , CRISPR-Cas Systems , HIV Infections/therapy , HIV-1/genetics , Adoptive Transfer , Animals , Combined Modality Therapy , DNA, Viral/genetics , DNA, Viral/immunology , Gene Editing , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/physiology , Humans , Mice , Treatment Outcome , Virus Latency
18.
Trends Microbiol ; 27(7): 593-606, 2019 07.
Article in English | MEDLINE | ID: mdl-30981593

ABSTRACT

Antiretroviral therapy has transformed human immunodeficiency virus infections from certain death to a manageable chronic disease. Achieving strict adherence to drug regimens that limit toxicities and viral resistance is an achievable goal. Success is defined by halting viral transmission and by continuous viral restriction. A step towards improving treatment outcomes is in long-acting antiretrovirals. While early results remain encouraging there remain opportunities for improvement. These rest, in part, on the required large drug dosing volumes, local injection-site reactions, and frequency of injections. Thus, implantable devices and long-acting parenteral prodrugs have emerged which may provide more effective clinical outcomes. The recent successes in transforming native antiretrovirals into lipophilic and hydrophobic prodrugs stabilized into biocompatible surfactants can positively affect both. Formulating antiretroviral prodrugs demonstrates improvements in cell and tissue targeting, in drug-dosing intervals, and in the administered volumes of nanosuspensions. As such, the newer formulations also hold the potential to suppress viral loads beyond more conventional therapies with the ultimate goal of HIV-1 elimination when combined with other modalities.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , Administration, Oral , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacokinetics , Antiretroviral Therapy, Highly Active , Drug Compounding , Drug Development , Humans , Theranostic Nanomedicine/methods , Theranostic Nanomedicine/standards
19.
Mol Neurobiol ; 56(4): 2896-2907, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30069830

ABSTRACT

Antiretroviral therapy (ART) restricts human immunodeficiency virus type one (HIV-1) replication and by so doing, improves the quality and longevity of life for infected people. Nonetheless, treatment can also lead to adverse clinical outcomes such as drug resistance and systemic adverse events. Both could be affected by long-acting slow effective release ART. Indeed, maintenance of sustained plasma drug levels, for weeks or months, after a single high-level dosing, could improve regimen adherence but, at the same time, affect systemic toxicities. Of these, the most troubling are those that affect the central nervous system (CNS). To address this, dolutegravir (Tivicay, DTG), a potent and durable HIV integrase inhibitor used effectively in combination ART was tested. Rodents were administered parenteral 45-mg/kg doses. DTG-associated changes in CNS homeostasis were assessed by measuring brain metabolic activities. After antiretroviral treatment, brain subregions were dissected and screened by mass spectrometry-based metabolomics. Metabolic drug-related dysregulation of energy and oxidative stress were readily observed within the cerebellum and frontal cortex following native drug administrations. Each was associated with alterations in neural homeostasis and depleted canonical oxidation protection pools that included glutathione and ascorbic acid. Surprisingly, the oxidative stress-related metabolites were completely attenuated when DTG was administered as nanoformulations. These data demonstrate the importance of formulation design in control of DTG or perhaps other antiretroviral drug-associated CNS events.


Subject(s)
Anti-Retroviral Agents/pharmacology , Brain/metabolism , Brain/pathology , Nanoparticles/chemistry , Oxidative Stress , Animals , Brain/drug effects , Glycolysis/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Injections , Male , Metabolomics , Mice, Inbred BALB C , Mice, Inbred C57BL , Oxazines , Oxidative Stress/drug effects , Piperazines , Pyridones , Reactive Oxygen Species/metabolism
20.
Chem Commun (Camb) ; 54(60): 8371-8374, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29995046

ABSTRACT

Abacavir pronucleotide nanoformulations (NM3ABC) were prepared as a novel long acting slow effective release antiretroviral therapy. Single NM3ABC treatment of human monocyte-derived macrophages produced sustained intracellular carbovir-triphosphate and antiretroviral activities for up to 30 days.

SELECTION OF CITATIONS
SEARCH DETAIL
...