Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38776915

ABSTRACT

BACKGROUND: Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS: Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS: Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING: This work was supported by NIH RM1HG009491 and DP5OD033430.

2.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38418917

ABSTRACT

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Subject(s)
Alternative Splicing , Evolution, Molecular , Hominidae , T-Box Domain Proteins , Tail , Animals , Humans , Mice , Alternative Splicing/genetics , Alu Elements/genetics , Disease Models, Animal , Genome/genetics , Hominidae/anatomy & histology , Hominidae/genetics , Introns/genetics , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tail/anatomy & histology , Tail/embryology , Exons/genetics
3.
Gene ; 829: 146494, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35447241

ABSTRACT

PINOID is a kinase belonging to the AGCVIII family, which regulates the polar distribution of PIN proteins and plays an important role in plant geotropism. However, the origin and evolutionary history of this gene family is not fully known. In this study, we identified 79 similar sequences across 17 plant species genomes (PINOID, D6PK, PINOID2, "hypothetical kinase"). Our results show that the AGCVIII kinase family may have originated from related "Hypothetical Kinases" that come out sister to the rest of the gene family members. These kinases differentiated their functions are found in different plant classes: D6PK in moss and PINOID and PINOID2 evolving in angiosperms including the pioneer plant Amborella trichopoda. Our study investigates the evolution of PINOID kinases from a phylogenetic perspective giving us insight into how this important plant signal transduction network switch evolved to play a fundamental and important function in plant growth and development. We highlight the importance of whole genome duplications and dispersed duplications as opposed to tandem duplications in the evolution of this gene family.


Subject(s)
Gene Duplication , Genes, Plant , Evolution, Molecular , Genome, Plant , Phylogeny , Plants
4.
Cancer Rep (Hoboken) ; 5(9): e1557, 2022 09.
Article in English | MEDLINE | ID: mdl-34541834

ABSTRACT

BACKGROUND: Muscular invasive bladder cancer (MIBC) is a common malignant tumor in the world. Because of their heterogeneity in prognosis and response to treatment, biomarkers that can predict survival or help make treatment decisions in patients with MIBC are essential for individualized treatment. AIM: We aimed to integrate bioinformatics research methods to identify a set of effective biomarkers capable of predicting, diagnosing, and treating MIBC. To provide a new theoretical basis for the diagnosis and treatment of bladder cancer. METHODS AND RESULTS: Gene expression profiles and clinical data of MIBC were obtained by downloading from the Cancer Genome Atlas database. A dataset of 129 MIBC cases and controls was included. 2084 up-regulated genes and 2961 down-regulated genes were identified by differentially expressed gene (DEG) analysis. Then, gene ontology analysis was performed to explore the biological functions of DEGs, respectively. The up-regulated DEGs are mainly enriched in epidermal cell differentiation, mitotic nuclear division, and so forth. They are also involved in the cell cycle, p53 signaling pathway, PPAR signaling pathway, and so forth. The weighted gene co-expression network analysis yielded five modules related to pathological stages and grading, of which blue and turquoise were the most relevant modules for MIBC. Next, Using Kaplan-Meier survival analysis to identify further hub genes, the screening criteria at p ≤ .05, we found CNKSR1, HIP1R, CFL2, TPM1, CSRP1, SYNM, POPDC2, PJA2, and RBBP8NL genes associated with the progression and prognosis of MIBC patients. Finally, immunohistochemistry experiments further confirmed that CNKSR1 plays a vital role in the tumorigenic context of MIBC. CONCLUSION: The research suggests that CNKSR1, POPDC2, and PJA2 may be novel biomarkers as therapeutic targets for MIBC, especially we used immunohistochemical further to validate CNKSR1 as a therapeutic target for MIBC which may help to improve the prognosis for MIBC.


Subject(s)
Urinary Bladder Neoplasms , Biomarkers, Tumor/analysis , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Prognosis , Urinary Bladder Neoplasms/genetics
5.
Biochem Biophys Rep ; 28: 101157, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34754951

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the adult liver and morbidity are increasing in recent years, however, there is still no effective strategy to prevent and diagnose HCC. Therefore, it is urgent to research the effective biomarker to predict clinical outcomes of HCC tumorigenesis. In the current study, differentially expressed genes in HCC and normal tissues were investigated using the Gene Expression Omnibus (GEO) dataset GSE144269 and The Cancer Genome Atlas (TCGA). Gene differential expression analysis and weighted correlation network analysis (WGCNA) methods were used to identify nine and 16 key gene modules from the GEO dataset and TCGA dataset, respectively, in which the green module in the GEO dataset and magenta module in TCGA were significantly correlated with HCC occurrence. Third, the enrichment score of gene function annotation results showed that these two key modules focus on the positive regulation of inflammatory response and cell differentiation, etc. Besides, PPI network analysis, mutation analysis, and survival analysis found that SLITRK6 had high connectivity, and its mutation significantly impacted overall survival. In addition, SLITRK6 was found to be low expressed in tumor cells. To summarize, SLITRK6 mutation was found to significantly affect the occurrence and prognosis of HCC. SLITRK6 was confirmed as a new potential gene target for HCC, which may provide a new theoretical basis for personalized diagnosis and chemotherapy of HCC in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...