Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 33: 253-264, 2021 11.
Article in English | MEDLINE | ID: mdl-34603794

ABSTRACT

Introduction: Transmembrane protein 16A (TMEM16A) is a Ca2+-activated chloride channel that plays a role in cancer cell proliferation, migration, invasion, and metastasis. However, whether TMEM16A contributes to breast cancer metastasis remains unknown. Objective: In this study, we investigated whether TMEM16A channel activation by ROCK1/moesin promotes breast cancer metastasis. Methods: Wound healing assays and transwell migration and invasion assays were performed to study the migration and invasion of MCF-7 and T47D breast cancer cells. Western blotting was performed to evaluate the protein expression, and whole-cell patch clamp recordings were used to record TMEM16A Cl- currents. A mouse model of breast cancer lung metastasis was generated by injecting MCF-7 cells via the tail vein. Metastatic nodules in the lung were assessed by hematoxylin and eosin staining. Lymph node metastasis, overall survival, and metastasis-free survival of breast cancer patients were assessed using immunohistochemistry and The Cancer Genome Atlas dataset. Results: TMEM16A activation promoted breast cancer cell migration and invasion in vitro as well as breast cancer metastasis in mice. Patients with breast cancer who had higher TMEM16A levels showed greater lymph node metastasis and shorter survival. Mechanistically, TMEM16A promoted migration and invasion by activating EGFR/STAT3/ROCK1 signaling, and the role of the TMEM16A channel activity was important in this respect. ROCK1 activation by RhoA enhanced the TMEM16A channel activity via the phosphorylation of moesin at T558. The cooperative action of TMEM16A and ROCK1 was supported through clinical findings indicating that breast cancer patients with high levels of TMEM16A/ROCK1 expression showed greater lymph node metastasis and poor survival. Conclusion: Our findings revealed a novel mechanism underlying TMEM16A-mediated breast cancer metastasis, in which ROCK1 increased TMEM16A channel activity via moesin phosphorylation and the increase in TMEM16A channel activities promoted cell migration and invasion. TMEM16A inhibition may be a novel strategy for treating breast cancer metastasis.


Subject(s)
Breast Neoplasms , Animals , Cell Movement , Cell Proliferation , Female , Humans , Mice , Microfilament Proteins , rho-Associated Kinases/genetics
2.
Br J Pharmacol ; 178(20): 4137-4154, 2021 10.
Article in English | MEDLINE | ID: mdl-34192810

ABSTRACT

BACKGROUND AND PURPOSE: Ca2+ -activated Cl- channels (Ano1 channels) contribute to the pathogenesis of colorectal cancer. Honokiol is known to inhibit cell proliferation and tumour growth in colorectal cancer. However, the molecular target of honokiol remains unclear. This study aimed to investigate whether honokiol inhibited cell proliferation of colorectal cancer by targeting Ano1 channels. EXPERIMENTAL APPROACH: Patch-clamp techniques were performed to study the effect of honokiol on Ca2+ -activated Cl- currents in HEK293 cells overexpressing Ano1- or Ano2-containing plasmids or in human colorectal carcinoma SW620 cells. Site-directed mutagenesis was used to identify the critical residues for honokiol-induced Ano1 inhibition. Proliferation of SW620 cells or human intestinal epithelial NCM460 cells by CCK-8 assays. KEY RESULTS: Honokiol blocked Ano1 currents in Ano1-overexpressing HEK293 cells and SW620 cells. Honokiol more potently inhibited Ano1 currents than Ano2 currents. Three amino acids (R429, K430 and N435) were critical for honokiol-induced Ano1 inhibition. The R429A/K430L/N435G mutation reduced the sensitivity of Ano1 to honokiol. Honokiol inhibited SW620 cell proliferation, and this effect was reduced by Ano1-shRNAs. Furthermore, Ano1 overexpression promoted proliferation in NCM460 cells with low Ano1 endogenous expression and resulted in an increased sensitivity to honokiol. Overexpression of the R429A/K430L/N435G mutation reduced WT Ano1-induced increase in the sensitivity of NCM460 cells to honokiol. CONCLUSION AND IMPLICATIONS: We identified a new anticancer mechanism of honokiol, through the inhibition of cell proliferation, by targeting Ano1 Ca2+ -activated Cl- channels.


Subject(s)
Chloride Channels , Colorectal Neoplasms , Anoctamin-1 , Biphenyl Compounds , Calcium/metabolism , Cell Proliferation , Chloride Channels/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , HEK293 Cells , Humans , Lignans
3.
J Adv Res ; 29: 23-32, 2021 03.
Article in English | MEDLINE | ID: mdl-33842002

ABSTRACT

Introduction: Ca2+-activated Cl- channel TMEM16A is expressed in endothelial cells, and contributes to many diseases such as hypertension, blood-brain barrier dysfunction, and pulmonary hypertension. It remains unclear whether TMEM16A regulates endothelial angiogenesis, which participates in many physiological and pathological processes. Cholesterol regulates many ion channels including TMEM16A, and high cholesterol levels contribute to endothelial dysfunction. It remains to be determined whether cholesterol regulates TMEM16A expression and function in endothelial cells. Objective: This study aimed to investigate whether cholesterol regulated TMEM16A expression and function in endothelial angiogenesis. Methods: Whole-cell patch clamp techniques were used to record Ca2+-activated Cl- currents in human aortic endothelial cells (HAECs) and HEK293 cells transfected with TMEM16A-overexpressing plasmids. Western blot was used to examine the expression of TMEM16A and DNA methyltransferase 1 (DNMT1) in HAECs. CCK-8 assay, would healing assay, and tube formation assay were used to test endothelial cell proliferation, migration and angiogenesis, respectively. Results: TMEM16A mediates the Ca2+-activated Cl- channel in HAECs. Cholesterol treatment inhibited TMEM16A expression via upregulation of DNMT1 in HAECs, and the inhibitory effect of cholesterol on TMEM16A expression was blocked by 5-aza, the DNMT1 inhibitor. In addition, direct application of cholesterol inhibited TMEM16A currents in heterologous HEK293 cells with an IC50 of 0.1209 µM. Similarly, cholesterol directly inhibited TMEM16A currents in HAECs. Furthermore, TMEM16A knockdown increased in vitro tube formation, cell migration and proliferation of HAECs, and TMEM16A overexpression produced the opposite effect. Conclusion: This study reveals a novel mechanism of cholesterol-mediated TMEM16A inhibition, by which cholesterol reduces TMEM16A expression via DNMT1-mediated methylation and directly inhibits channel activities. TMEM16A channel inhibition promotes endothelial cell angiogenesis.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Chloride Channels/metabolism , Cholesterol/pharmacology , Endothelial Cells/drug effects , Neovascularization, Pathologic/metabolism , Anoctamin-1/metabolism , Aorta/metabolism , Blood-Brain Barrier/metabolism , Calcium/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Endothelial Cells/metabolism , HEK293 Cells , Humans , Hypertension/metabolism , Patch-Clamp Techniques
4.
J Adv Res ; 23: 25-35, 2020 May.
Article in English | MEDLINE | ID: mdl-32071789

ABSTRACT

TMEM16A Ca2+-activated Cl- channels are expressed in pancreatic acinar cells and participate in inflammation-associated diseases. Whether TMEM16A contributes to the pathogenesis of acute pancreatitis (AP) remains unknown. Here, we found that increased TMEM16A expression in the pancreatic tissue was correlated with the interleukin-6 (IL-6) level in the pancreatic tissue and in the serum of a cerulein-induced AP mouse model. IL-6 treatment promoted TMEM16A expression in AR42J pancreatic acinar cells via the IL-6 receptor (IL-6R)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In addition, TMEM16A was co-immunoprecipitated with the inositol 1,4,5-trisphosphate receptor (IP3R) and was activated by IP3R-mediated Ca2+ release. TMEM16A inhibition reduced the IP3R-mediated Ca2+ release induced by cerulein. Furthermore, TMEM16A overexpression activated nuclear factor-κB (NFκB) and increased IL-6 release by increasing intracellular Ca2+. TMEM16A knockdown by shRNAs reduced the cerulein-induced NFκB activation by Ca2+. TMEM16A inhibitors inhibited NFκB activation by decreasing channel activity and reducing TMEM16A protein levels in AR42J cells, and it ameliorated pancreatic damage in cerulein-induced AP mice. This study identifies a novel mechanism underlying the pathogenesis of AP by which IL-6 promotes TMEM16A expression via IL-6R/STAT3 signaling activation, and TMEM16A overexpression increases IL-6 secretion via IP3R/Ca2+/NFκB signaling activation in pancreatic acinar cells. TMEM16A inhibition may be a new potential strategy for treating AP.

5.
Cancer Lett ; 455: 48-59, 2019 07 28.
Article in English | MEDLINE | ID: mdl-31042586

ABSTRACT

The Ca2+-activated chloride channel TMEM16A (anoctamin 1) is overexpressed in breast cancer. It remains unclear how TMEM16A overexpression plays a role in carcinogenesis in breast cancer. In this study, we found that high TMEM16A expression in combination with high EGFR or STAT3 expression was significantly associated with shorter overall survival in ER-positive breast cancer patients without tamoxifen treatment, and longer overall survival in patients with tamoxifen treatment. EGFR/STAT3 signaling activation by EGF promoted TMEM16A expression, and TMEM16A overexpression activated EGFR/STAT3 signaling in breast cancer cells. Both in vitro and in animal studies showed that TMEM16A overexpression promoted, and TMEM16A knockdown inhibited breast cancer cell proliferation and tumor growth. In addition, TMEM16A overexpression-induced cell proliferation was blocked by EGFR/STAT3 inhibitors, and TMEM16A knockdown reduced EGF-induced proliferation and tumorigenesis in breast cancer. Furthermore, inhibition of TMEM16A channel function effectively reduced breast cancer cell proliferation, especially in combination with EGFR inhibitors. Our findings identify a mutual activation loop between TMEM16A and EGFR/STAT3 signaling, which is important for breast cancer proliferation and growth. TMEM16A inhibition may represent a novel therapy for EGFR-expressing breast cancer.


Subject(s)
Anoctamin-1/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Neoplasm Proteins/metabolism , STAT3 Transcription Factor/metabolism , Adult , Aged , Aged, 80 and over , Animals , Anoctamin-1/biosynthesis , Carcinogenesis , Cell Line, Tumor , ErbB Receptors/biosynthesis , ErbB Receptors/metabolism , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Proteins/biosynthesis , STAT3 Transcription Factor/biosynthesis , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...