Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 16, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273363

ABSTRACT

BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.


Subject(s)
Aedes , Culex , Animals , Humans , Male , Phylogeny , DNA Transposable Elements/genetics , Mosquito Vectors/genetics , Culex/genetics , Aedes/genetics , Chromosomes , Evolution, Molecular
2.
Genetica ; 151(6): 349-355, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37819589

ABSTRACT

The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Male , Drosophila/genetics , Drosophila/metabolism , Testis/metabolism , Drosophila Proteins/genetics , Phenotype , Mitochondria/genetics , Cell Death/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Drosophila melanogaster/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics
3.
Mol Ecol ; 32(20): 5609-5625, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702976

ABSTRACT

Detailed knowledge of phylogeography is important for control of mosquito species involved in the transmission of human infectious diseases. Anopheles messeae is a geographically widespread and genetically diverse dominant vector of malaria in Eurasia. A closely related species, An. daciae, was originally distinguished from An. messeae based on five nucleotide substitutions in its ribosomal DNA (rDNA). However, the patterns of phylogeographic history of these species in Eurasia remain poorly understood. Here, using internal transcribed spacer 2 (ITS2) of rDNA and karyotyping for the species identification we determined the composition of five Anopheles species in 28 locations in Eurasia. Based on the frequencies of 11 polymorphic chromosomal inversions used as genetic markers, a large-scale population genetics analysis was performed of 1932 mosquitoes identified as An. messeae, An. daciae and their hybrids. The largest genetic differences between the species were detected in the X sex chromosome suggesting a potential involvement of this chromosome in speciation. The frequencies of autosomal inversions in the same locations differed by 13%-45% between the species demonstrating a restricted gene flow between the species. Overall, An. messeae was identified as a diverse species with a more complex population structure than An. daciae. The clinal gradients in frequencies of chromosomal inversions were determined in both species implicating their possible involvement in climate adaptations. The frequencies of hybrids were low ~1% in northern Europe but high up to 50% in south-eastern populations. Thus, our study revealed critical differences in patterns of phylogeographic history between An. messeae and An. daciae in Eurasia. This knowledge will help to predict the potential of the malaria transmission in the northern territories of the continent.

4.
BMC Biol ; 21(1): 63, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37032389

ABSTRACT

BACKGROUND: Phylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics. RESULTS: To reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group. CONCLUSIONS: Our phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia.


Subject(s)
Anopheles , Malaria , Animals , Humans , Phylogeny , Anopheles/genetics , Mosquito Vectors
5.
PeerJ ; 11: e14063, 2023.
Article in English | MEDLINE | ID: mdl-36643636

ABSTRACT

The GAGA protein (also known as GAF) is a transcription factor encoded by the Trl gene in D. melanogaster. GAGA is involved in the regulation of transcription of many genes at all stages of fly development and life. Recently, we investigated the participation of GAGA in spermatogenesis and discovered that Trl mutants experience massive degradation of germline cells in the testes. Trl underexpression induces autophagic death of spermatocytes, thereby leading to reduced testis size. Here, we aimed to determine the role of the transcription factor GAGA in the regulation of ectopic germline cell death. We investigated how Trl underexpression affects gene expression in the testes. We identified 15,993 genes in three biological replicates of our RNA-seq analysis and compared transcript levels between hypomorphic Trl R85/Trl 362 and Oregon testes. A total of 2,437 differentially expressed genes were found, including 1,686 upregulated and 751 downregulated genes. At the transcriptional level, we detected the development of cellular stress in the Trl-mutant testes: downregulation of the genes normally expressed in the testes (indicating slowed or abrogated spermatocyte differentiation) and increased expression of metabolic and proteolysis-related genes, including stress response long noncoding RNAs. Nonetheless, in the Flybase Gene Ontology lists of genes related to cell death, autophagy, or stress, there was no enrichment with GAGA-binding sites. Furthermore, we did not identify any specific GAGA-dependent cell death pathway that could regulate spermatocyte death. Thus, our data suggest that GAGA deficiency in male germline cells leads to an imbalance of metabolic processes, impaired mitochondrial function, and cell death due to cellular stress.


Subject(s)
Drosophila Proteins , Spermatogenesis , Transcription Factors , Animals , Male , DNA-Binding Proteins/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Germ Cells/metabolism , Spermatogenesis/genetics , Transcription Factors/genetics , Transcriptome
6.
Insects ; 12(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34564275

ABSTRACT

The Eurasian malaria vector Anopheles messeae is a widely spread and genetically diverse species. Five widespread polymorphic chromosomal inversions were found in natural populations of this mosquito. A cryptic species, Anopheles daciae, was differentiated from An. messeae by the presence of several nucleotide substitutions in the Internal Transcribed Spacer 2 (ITS2) region of ribosomal DNA. However, because of the absence of a high-quality reference cytogenetic map, the inversion polymorphisms in An. daciae and An. messeae remain poorly understood. Moreover, a recently determined heterogeneity in ITS2 in An. daciae questioned the accuracy of the previously used Restriction Fragment Length Polymorphism (RFLP) assay for species diagnostics. In this study, a standard-universal cytogenetic map was constructed based on orcein stained images of chromosomes from salivary glands for population studies of the chromosomal inversions that can be used for both An. messeae and An. daciae. In addition, a new ITS2-RFLP approach for species diagnostics was developed. Both methods were applied to characterize inversion polymorphism in populations of An. messeae and An. daciae from a single location in Western Siberia in Russia. The analysis demonstrates that cryptic species are remarkably different in their frequencies of chromosomal inversion variants. Our study supports previous observations that An. messeae has higher inversion polymorphism in all autosomes than the cryptic species An. daciae.

7.
Front Cell Dev Biol ; 8: 600868, 2020.
Article in English | MEDLINE | ID: mdl-33240894

ABSTRACT

The Drosophila hyperplastic disc (hyd) gene is the ortholog of mammalian tumor suppressor EDD, which is implicated in a wide variety of cellular processes, and its regulation is impaired in various tumors. It is a member of the highly conserved HECT family of E3 ubiquitin ligases, which directly attach ubiquitin to targeted substrates. In early works, it was shown that Drosophila Hyd may be a tumor suppressor because it is involved in the control of imaginal-disc cell proliferation and growth. In this study, we demonstrated that Hyd is also important for the regulation of female germ cell proliferation and that its depletion leads to additional germline cell mitoses. Furthermore, we revealed a previously unknown Hyd function associated with the maintenance of germ cells' viability. A reduction in hyd expression by either mutations or RNA interference resulted in large-scale germ cell death at different stages of oogenesis. Thus, the analysis of phenotypes arising from the hyd deficiency points to Hyd's role in the regulation of germline metabolic processes during oogenesis.

8.
Int J Mol Sci ; 21(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050455

ABSTRACT

Collective cell migration is a complex process that happens during normal development of many multicellular organisms, as well as during oncological transformations. In Drosophila oogenesis, a small set of follicle cells originally located at the anterior tip of each egg chamber become motile and migrate as a cluster through nurse cells toward the oocyte. These specialized cells are referred to as border cells (BCs) and provide a simple and convenient model system to study collective cell migration. The process is known to be complexly regulated at different levels and the product of the slow border cells (slbo) gene, the C/EBP transcription factor, is one of the key elements in this process. However, little is known about the regulation of slbo expression. On the other hand, the ubiquitously expressed transcription factor GAGA, which is encoded by the Trithorax-like (Trl) gene was previously demonstrated to be important for Drosophila oogenesis. Here, we found that Trl mutations cause substantial defects in BC migration. Partially, these defects are explained by the reduced level of slbo expression in BCs. Additionally, a strong genetic interaction between Trl and slbo mutants, along with the presence of putative GAGA binding sites within the slbo promoter and enhancer, suggests the direct regulation of this gene by GAGA. This idea is supported by the reduction in the slbo-Gal4-driven GFP expression within BC clusters in Trl mutant background. However, the inability of slbo overexpression to compensate defects in BC migration caused by Trl mutations suggests that there are other GAGA target genes contributing to this process. Taken together, the results define GAGA as another important regulator of BC migration in Drosophila oogenesis.


Subject(s)
Cell Movement/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Transcription Factors/genetics , Amino Acid Substitution , Animals , Animals, Genetically Modified , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation , Mutation , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism
9.
Genes (Basel) ; 11(2)2020 02 05.
Article in English | MEDLINE | ID: mdl-32033356

ABSTRACT

Chromosomal inversions are important drivers of genome evolution. The Eurasian malaria vector Anophelesmesseae has five polymorphic inversions. A cryptic species, An. daciae, has been discriminated from An. messeae based on five fixed nucleotide substitutions in the internal transcribed spacer 2 (ITS2) of ribosomal DNA. However, the inversion polymorphism in An. daciae and the genome divergence between these species remain unexplored. In this study, we sequenced the ITS2 region and analyzed the inversion frequencies of 289 Anopheles larvae specimens collected from three locations in the Moscow region. Five individual genomes for each of the two species were sequenced. We determined that An. messeae and An. daciae differ from each other by the frequency of polymorphic inversions. Inversion X1 was fixed in An. messeae but polymorphic in An. daciae populations. The genome sequence comparison demonstrated genome-wide divergence between the species, especially pronounced on the inversion-rich X chromosome (mean Fst = 0.331). The frequency of polymorphic autosomal inversions was higher in An. messeae than in An. daciae. We conclude that the X chromosome inversions play an important role in the genomic differentiation between the species. Our study determined that An. messeae and An. daciae are closely related species with incomplete reproductive isolation.


Subject(s)
Anopheles/classification , Anopheles/genetics , Chromosomes/genetics , DNA, Ribosomal Spacer/analysis , Genes, Insect , Mosquito Vectors/genetics , Polymorphism, Genetic , Animals , Anopheles/parasitology , Chromosome Inversion , Genome , Malaria/parasitology , Mosquito Vectors/growth & development , Mosquito Vectors/parasitology , Species Specificity , Whole Genome Sequencing
10.
J Vector Ecol ; 44(1): 48-56, 2019 06.
Article in English | MEDLINE | ID: mdl-31124233

ABSTRACT

Resistance to agricultural pesticides is an important and insufficiently studied concern for pest and disease vector research. We determined the malathion resistance of species in the Anopheles maculipennis mosquito group in a habitat near Novosibirsk, Russia. Most of the 851 individuals we measured were members of the Anopheles messeae s.l. complex (An. messeae and An. daciae species). The LC50 value for malathion was 0.052 mg/L for the mixed specimens, and we failed to find any differences between species. The LC50 value was within the range of values for malathion resistance of Anopheles stephensi and Culex quinquefasciatus. As the main resistance mechanism to organophosphate and carbamate insecticides is a single mononucleotide substitution in the ace-1 gene, we searched for this mutation in An. messeae s.l. and An. beklemishevi by restriction analysis. This mutation was not found in 347 of the specimens. We sequenced the ace-1 gene fragment for 24 specimens from four species of the Anopheles maculipennis group, including An. messeae, An. daciae, An. atroparvus, and An. beklemishevi. These specimens harbored a nucleotide substitution in the triplet where a mutation can lead to insecticide resistance, but this substitution would make it difficult for the resistance to develop. Since the studied specimens belong to branches of the Palearctic portion of the Anopheles maculipennis group, we suspect that all other Palearctic species of this group would have difficulties harboring the ace-1 mutation that would lead to organophosphate and carbamate resistance.


Subject(s)
Anopheles/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Malathion/pharmacology , Animal Distribution , Animals , Anopheles/genetics , Genetic Markers , Kazakhstan , Malaria/transmission , Mosquito Vectors , Russia
11.
Genesis ; 57(2): e23269, 2019 02.
Article in English | MEDLINE | ID: mdl-30537428

ABSTRACT

Investigation of Drosophila oogenesis provides the opportunity to understand conservative genetic mechanisms underlying fertile female gamete development. In this study, we showed that the Drosophila DNA-binding protein GAGA factor (GAF) had a multifunctional role in oogenesis and it is involved in the regulation of this process genetic program. We studied the influence on Drosophila oogenesis of a number of mutations in the 5' region of the Trl gene that encodes GAF. We found that our originally generated Trl mutations lead to a decrease in transcriptional gene activity and levels of GAF expression in both germline and follicular cells. Cytological (fluorescence and electron microscopy) analysis showed that GAF loss resulted in multiple oogenesis defects. Mutations affected the actin cytoskeleton, leading to decrease of cytoplasmic filaments in nurse cells and basal actin in follicular cells. GAF depletion also leads to abnormal follicular cells migration, both border and centripetal. In addition, mutant ovaries demonstrated abnormalities in germ cells, including mitochondria, endoplasmic reticulum, karyosome organization, yolk granule formation and selective transport. Loss of GAF also promoted excessive cell death and egg chamber degradation. In sum, these defects caused very high or full female sterility. Since one of the main GAF activities is regulation of transcription, the complex phenotypes of the Trl mutants might be the consequence of its multiple target genes misexpression.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Fertility , Oogenesis , Transcription Factors/genetics , Actin Cytoskeleton/metabolism , Animals , Cell Death , Cell Movement , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Endoplasmic Reticulum/metabolism , Female , Male , Ovum/metabolism , Transcription Factors/metabolism
12.
Chromosoma ; 127(4): 475-487, 2018 12.
Article in English | MEDLINE | ID: mdl-30030602

ABSTRACT

Border cell (BC) migration during Drosophila oogenesis is an excellent model for the analysis of the migratory and invasive cell behavior. Most studies on BC migration have exploited a slbo-Gal4 driver to regulate gene expression in these cells or to mark them. Here, we report that the slbo-Gal4 transgene present in the line #6458 from the Bloomington Stock Center is inserted within chickadee (chic), a gene encoding the actin-binding protein Profilin, which promotes actin polymerization and is known to be involved in cell migration. The chic6458 mutation caused by the transgene insertion behaves as a null chic allele and is homozygous lethal. To evaluate possible effects of chic6458 on the assessment of BC behavior, we generated new lines bearing the slbo-Gal4 transgene inserted into different second chromosome loci that do not appear to be involved in cell migration. Using these new lines and the slbo-Gal4-chic6458 line, we defined the functional relationships between the twinfilin (twf) and chic in BC migration. Migration of BCs is substantially reduced by mutations in twf, which encodes an actin-binding protein that inhibits actin filament assembly. The defects caused by twf mutations are significantly suppressed when the slbo-Gal4-chic6458, but not the new slbo-Gal4 drivers were used. These findings indicate twf and chic interact and function antagonistically during BC migration in Drosophila oogenesis.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Oogenesis/genetics , Ovary/cytology , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Cell Movement/genetics , Chromosomes, Insect , Drosophila/cytology , Female , Heterozygote , Microfilament Proteins/genetics , Mutation , Profilins/genetics
13.
Genesis ; 52(8): 738-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24817547

ABSTRACT

The Drosophila Trithorax-like (Trl) gene encodes a GAGA factor which regulates a number of developmentally important genes. In this study, we identify a new function for Drosophila GAGA factor in male germ cell development. Trl mutants carrying strong hypomorphic alleles display loss of primordial germ cells during their migration in embryogenesis and severe disruption in mitochondria structure during early spermatogenesis. The mutation resulted in small testes formation, a deficit of germ cells, abnormal mitochondrial morphogenesis, spermatocyte death through autophagy, and partial or complete male sterility. Pleiotropic mutation effects can be explained by the misexpression of GAGA factor target genes, the products of which are required for germ cell progression into mature sperm.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Alleles , Animals , Autophagy/genetics , Cell Death , Cell Differentiation , Cell Movement , DNA-Binding Proteins/metabolism , Drosophila/cytology , Drosophila/embryology , Drosophila Proteins/metabolism , Germ Cells , Infertility, Male , Male , Microscopy, Electron , Microscopy, Fluorescence , Mutation , Phenotype , Spermatocytes , Spermatogenesis , Transcription Factors/metabolism , Transcription, Genetic
14.
Cell Biol Int ; 37(2): 149-59, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23339103

ABSTRACT

Capping protein (CP) is a well-characterised actin-binding protein important for regulation of actin filament (AF) assembly. CP caps the barbed end of AFs, inhibiting the addition and loss of actin monomers. In Drosophila melanogaster, the gene encoding CP ß-subunit is named capping protein beta (cpb; see Hopmann et al. [1996] J Cell Biol 133: 1293-305). The cpb level is reduced in the Drosophila bristle actin cytoskeleton and becomes disorganised with abnormal morphology. A reduced level of the CP protein in ovary results in disruption of oocyte determination, and disturbance of nurse cell (NC) cortical integrity and dumping. We describe novel defects appearing in cpb mutants during oogenesis, in which cpb plays an important role in border and centripetal follicle cell migration, ring canal development and cytoplasmic AF formation. The number of long cytoplasmic AFs was dramatically reduced in cpb hypomorphs and abnormal actin aggregates was seen on the inner side of NC membranes. A hypothesis to explain the formation of abnormal short-cut cytoplasmic AFs and actin aggregates in the cpb mutant NCs was proffered, along with a discussion of the reasons for 'dumpless' phenotype formation in the mutants.


Subject(s)
Actin Capping Proteins/metabolism , Actin Cytoskeleton/physiology , Cell Movement , Cytoskeletal Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Embryo, Nonmammalian/metabolism , Actin Capping Proteins/genetics , Animals , Drosophila/embryology , Drosophila Proteins/genetics , Mutation , Oogenesis , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...