Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Methods Mol Biol ; 2820: 89-98, 2024.
Article in English | MEDLINE | ID: mdl-38941017

ABSTRACT

Fishery products are one of the main human nutritional sources, and due to the consumption increase, the quality of the derived products may be modified, during catching, technological processing, and storage. Detection and identification of pathogenic and spoilage microorganisms in fishery products is needed because the first may be involved in human diseases, while the second is responsible of significant economic losses. In this sense, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method and computational analysis of MS data are useful tools for characterizing and identifying different microorganisms and to develop promising strategies for food science investigations. Moreover, in the past decade, metaproteomic methodologies have progressed for the study of microorganisms isolated from their natural samples and independently of the culture restrictions. Metaproteomics enables assessment of proteins and pathways from individual members of the consortium. Metaproteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples.According to that, the sample preparation of the fishery product, the LC-ESI-MS/MS dedicated method, and the MS data analysis were described in the present chapter to obtain the metaproteomic analysis of the respective microbiomes or microbial communities.


Subject(s)
Microbiota , Proteomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Fisheries , Humans , Fish Products/microbiology , Fish Products/analysis , Animals , Food Microbiology
2.
Food Chem ; 450: 139342, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631198

ABSTRACT

Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.


Subject(s)
Fish Products , Proteomics , Pseudomonas , Animals , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Pseudomonas/classification , Pseudomonas/chemistry , Fish Products/analysis , Fish Products/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/analysis , Fish Diseases/microbiology , Proteome/analysis , Proteome/metabolism , Virulence Factors/metabolism , Fishes/microbiology
3.
Food Chem ; 448: 139045, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537549

ABSTRACT

This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.


Subject(s)
Bacteria , Bacterial Proteins , Proteomics , Seafood , Virulence Factors , Seafood/microbiology , Seafood/analysis , Virulence Factors/metabolism , Virulence Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Animals , Food Microbiology
4.
J Agric Food Chem ; 72(8): 4448-4463, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364257

ABSTRACT

The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.


Subject(s)
Histamine , Putrescine , Animals , Proteomics , Virulence Factors , Biogenic Amines/metabolism , Bacteria/metabolism , Fish Products , Peptides , Seafood/microbiology
5.
J Genet Eng Biotechnol ; 21(1): 51, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126186

ABSTRACT

BACKGROUND: Eighty-three strains of Leuconostoc mesenteroides were isolated from Algerian raw camel milk. Based on morphological, biochemical, and physiological characters tests, strains were identified as Ln. mesenteroides subsp. mesenteroides. Seven strains had a remarkable antagonistic and probiotic characterization. The present study aims at identifying these strains by means of 16 s rRNA gene sequencing and Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), extending phenotypic and genotypic studies done previously. RESULTS: The phyloproteomic dendrograms of the studied strains based on MALDI-TOF MS provided the same identification with more intraspecific information from the 16S rRNA gene sequencing based on phylogenetic analysis. The latter were in agreement with the previous biochemical/physiological identification, the seven isolated strains were Ln. mesenteroides subsp. mesenteroides. CONCLUSIONS: Remarkably, MALDI-TOF MS fingerprinting was found to be effective enough as 16S rRNA gene sequencing identification, allowing faster and more reliable analysis than biochemical/physiological methods.

6.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175409

ABSTRACT

Biogenic amine-producing bacteria are responsible for the production of basic nitrogenous compounds (histamine, cadaverine, tyramine, and putrescine) following the spoilage of food due to microorganisms. In this study, we adopted a shotgun proteomics strategy to characterize 15 foodborne strains of biogenic-amine-producing bacteria. A total of 10,673 peptide spectrum matches belonging to 4081 peptides and corresponding to 1811 proteins were identified. Relevant functional pathways were determined, and strains were differentiated into hierarchical clusters. An expected protein-protein interaction network was created (260 nodes/1973 interactions). Most of the determined proteins were associated with networks/pathways of energy, putrescine metabolism, and host-virus interaction. Additionally, 556 peptides were identified as virulence factors. Moreover, 77 species-specific peptide biomarkers corresponding to 64 different proteins were proposed to identify 10 bacterial species. This represents a major proteomic dataset of biogenic-amine-producing strains. These results may also be suitable for new treatments for food intoxication and for tracking microbial sources in foodstuffs.


Subject(s)
Proteomics , Putrescine , Putrescine/metabolism , Biogenic Amines/metabolism , Bacteria/metabolism , Peptides/metabolism , Seafood , Food Microbiology
7.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978792

ABSTRACT

This study focused on the quality loss inhibition of fish muscle during refrigerated storage. Two parallel experiments were carried out that were focused on the employment of pitaya (Stenocereus thurberi) extracts in biodegradable packing films. On the one hand, a pitaya-gelatin film was employed for hake (Merluccius merluccius) muscle storage. On the other hand, a pitaya-polylactic acid (PLA) film was used for Atlantic mackerel (Scomber scombrus) muscle storage. In both experiments, fish-packing systems were stored at 4 °C for 8 days. Quality loss was determined by lipid damage and microbial activity development. The presence of the pitaya extract led to an inhibitory effect (p < 0.05) on peroxide, fluorescent compound, and free fatty acid (FFA) values in the gelatin-hake system and to a lower (p < 0.05) formation of thiobarbituric acid reactive substances, fluorescent compounds, and FFAs in the PLA-mackerel system. Additionally, the inclusion of pitaya extracts in the packing films slowed down (p < 0.05) the growth of aerobes, anaerobes, psychrotrophs, and proteolytic bacteria in the case of the pitaya-gelatin films and of aerobes, anaerobes, and proteolytic bacteria in the case of pitaya-PLA films. The current preservative effects are explained on the basis of the preservative compound presence (betalains and phenolic compounds) in the pitaya extracts.

8.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36829882

ABSTRACT

A biorefinery process was developed for a freeze-dried pomace of calafate berries (Berberis microphylla). The process consisted of extraction of lipophilic components with supercritical CO2 (scCO2) and subsequent extraction of the residue with a pressurized mixture of ethanol/water (1:1 v/v). scCO2 extracted oil from the pomace, while pressurized liquid extraction generated a crude extract rich in phenols and a residue rich in fiber, proteins and minerals. Response surface analysis of scCO2 extraction suggested optimal conditions of 60 °C, 358.5 bar and 144.6 min to obtain a lipid extract yield of 11.15% (d.w.). The dark yellow oil extract contained a good ratio of ω6/ω3 fatty acids (1:1.2), provitamin E tocopherols (406.6 mg/kg), and a peroxide index of 8.6 meq O2/kg. Pressurized liquid extraction generated a polar extract with good phenolic content (33 mg gallic acid equivalents /g d.w.), anthocyanins (8 mg/g) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl test = 25 µg/mL and antioxidant activity = 63 µM Te/g). The extraction kinetics of oil by scCO2 and phenolic compounds were optimally adjusted to the spline model (R2 = 0.989 and R2 = 0.999, respectively). The solid extracted residue presented a fiber content close to cereals (56.4% d.w.) and acceptable values of proteins (29.6% d.w.) and minerals (14.1% d.w.). These eco-friendly processes valorize calafate pomace as a source of ingredients for formulation of healthy foods, nutraceuticals and nutritional supplements.

9.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430310

ABSTRACT

Enterococcus belongs to a group of microorganisms known as lactic acid bacteria (LAB), which constitute a broad heterogeneous group of generally food-grade microorganisms historically used in food preservation. Enterococci live as commensals of the gastrointestinal tract of warm-blooded animals, although they also are present in food of animal origin (milk, cheese, fermented sausages), vegetables, and plant materials because of their ability to survive heat treatments and adverse environmental conditions. The biotechnological traits of enterococci can be applied in the food industry; however, the emergence of enterococci as a cause of nosocomial infections makes their food status uncertain. Recent advances in high-throughput sequencing allow the subtyping of bacterial pathogens, but it cannot reflect the temporal dynamics and functional activities of microbiomes or bacterial isolates. Moreover, genetic analysis is based on sequence homologies, inferring functions from databases. Here, we used an end-to-end proteomic workflow to rapidly characterize two bacteriocin-producing Enterococcus faecium (Efm) strains. The proteome analysis was performed with liquid chromatography coupled to a trapped ion mobility spectrometry-time-of-flight mass spectrometry instrument (TimsTOF) for high-throughput and high-resolution characterization of bacterial proteins. Thus, we identified almost half of the proteins predicted in the bacterial genomes (>1100 unique proteins per isolate), including quantifying proteins conferring resistance to antibiotics, heavy metals, virulence factors, and bacteriocins. The obtained proteomes were annotated according to function, resulting in 22 complete KEGG metabolic pathway modules for both strains. The workflow used here successfully characterized these bacterial isolates and showed great promise for determining and optimizing the bioengineering and biotechnology properties of other LAB strains in the food industry.


Subject(s)
Bacteriocins , Cheese , Enterococcus faecium , Animals , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Bacteriocins/metabolism , Proteomics , Enterococcus , Cheese/microbiology
10.
Microbiol Resour Announc ; 11(11): e0086622, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36222694

ABSTRACT

Here, we report the draft genome sequences of two bacteriocin-producing Enterococcus faecium strains isolated from nonfermented animal foods in Spain. The genomes of the strains contain at least three different regions encoding bacteriocins, and the strains comply with the European Food Safety Authority guidance for use in animal nutrition.

11.
Microbiol Resour Announc ; 11(11): e0101222, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36314936

ABSTRACT

Raoultella ornithinolytica has become increasingly important in human diseases. Here, we report the nearly complete genome sequence of a multidrug-resistant strain, R. ornithinolytica MQB_Silv_108, which was isolated from the effluent from a domestic wastewater treatment plant in Spain. Therefore, its release into the environment poses a possible exposure risk for humans and animals.

12.
Nutrients ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36297084

ABSTRACT

Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.


Subject(s)
Anti-Allergic Agents , Anti-Infective Agents , Peptides , Analgesics, Opioid , Anti-Allergic Agents/pharmacology , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents , Antioxidants/pharmacology , Complex Mixtures , Dietary Supplements , Epitopes , Fibrinolytic Agents , Food Hypersensitivity/prevention & control , Peptide Hydrolases , Peptides/pharmacology , Peptides/chemistry , Proteomics
13.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142880

ABSTRACT

Enterococcus species are Gram-positive bacteria that are normal gastrointestinal tract inhabitants that play a beneficial role in the dairy and meat industry. However, Enterococcus species are also the causative agents of health care-associated infections that can be found in dairy and fermented food products. Enterococcal infections are led by strains of Enterococcus faecalis and Enterococcus faecium, which are often resistant to antibiotics and biofilm formation. Enterococci virulence factors attach to host cells and are also involved in immune evasion. LC-MS/MS-based methods offer several advantages compared with other approaches because one can directly identify microbial peptides without the necessity of inferring conclusions based on other approaches such as genomics tools. The present study describes the use of liquid chromatography−electrospray ionization tandem mass spectrometry (LC−ESI−MS/MS) to perform a global shotgun proteomics characterization for opportunistic pathogenic Enterococcus from different dairy and fermented food products. This method allowed the identification of a total of 1403 nonredundant peptides, representing 1327 proteins. Furthermore, 310 of those peptides corresponded to proteins playing a direct role as virulence factors for Enterococcus pathogenicity. Virulence factors, antibiotic sensitivity, and proper identification of the enterococcal strain are required to propose an effective therapy. Data are available via ProteomeXchange with identifier PXD036435. Label-free quantification (LFQ) demonstrated that the majority of the high-abundance proteins corresponded to E. faecalis species. Therefore, the global proteomic repository obtained here can be the basis for further research into pathogenic Enterococcus species, thus facilitating the development of novel therapeutics.


Subject(s)
Enterococcus , Fermented Foods , Anti-Bacterial Agents/pharmacology , Chromatography, Liquid , Drug Resistance, Bacterial , Enterococcus faecalis , Food Microbiology , Microbial Sensitivity Tests , Proteomics , Tandem Mass Spectrometry , Virulence Factors
14.
Foods ; 11(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406992

ABSTRACT

This study analyzed the antimicrobial effect of aqueous extracts of flour obtained from red alga (Gelidium sp.) both in vitro, against most common food pathogenic and spoilage bacteria, and in a food model system during the chilled storage of Atlantic mackerel (Scomber scombrus). Results of in vitro assays allowed the conclusion that the aqueous flour extracts have antimicrobial activity against Gram-negative bacteria such as Enterobacteriaceae (Escherichia coli, Enterobacter aerogenes, and Klebsiella pneumoniae) and proteobacteria (Vibrio alginolyticus), and against Gram-positive bacteria such as Bacillus cereus and B. subtilis. In the food model study, different concentrations of the flour extract were present in the icing medium, microbial and chemical analyses being carried out in fish muscle at different storage times. An inhibitory effect (p < 0.05) on microbial growth (aerobes, psychrotrophs, Enterobacteriaceae, and proteolytic and lipolytic bacteria) and on chemical quality indices (pH, total volatile amines, and trimethylamine) was concluded. This effect was more pronounced when the flour extract concentration in the ice increased and at advanced storage times. This study provides a first approach to the beneficial use of flour of the alga Gelidium as a new preserving strategy for chilled fish.

15.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360905

ABSTRACT

Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Drug Resistance, Multiple, Bacterial , Listeria/drug effects , Listeria/pathogenicity , Proteome/chemistry , Virulence Factors/chemistry , ATP-Binding Cassette Transporters/chemistry , Chromatography, Liquid/methods , Genes, Bacterial , Listeria/classification , Listeria/genetics , Peptides/chemistry , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
16.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205746

ABSTRACT

This work addressed the preservative behaviour of different icing media containing extracts from the alga Bifurcaria bifurcata. A comparative study of the antimicrobial and antioxidant effects of aqueous and ethanolic extracts of this macroalga was carried out. Whole hake (Merluccius merluccius) pieces were stored in ice containing either kind of extract and analysed for quality changes throughout a 13-day storage period. A progressive loss of microbial and biochemical quality was detected in all batches as chilling time increased. A significant inhibitory effect (p < 0.05) on microbial activity could be observed as a result of including the aqueous (lowering of psychrotrophic and lipolytic counts and pH value) and ethanolic (lowering of psychrotrophic and lipolytic counts) extracts. Additionally, both kinds of extract led to a substantial inhibition (p < 0.05) in the lipid hydrolysis rate (formation of free fatty acids), greater in the case of the batch containing ethanolic extract. Concerning lipid oxidation, a similar inhibitory effect (p < 0.05) on the formation of secondary compounds (thiobarbituric acid substances) was noticed in fish specimens corresponding to both alga extracts; however, more (p < 0.05) peroxide formation was detected in fish corresponding to the ethanolic extract batch. A preservative effect can be concluded for both kinds of extract; this effect agrees with previous studies reporting the presence of hydrophilic and lipophilic bioactive compounds in B. bifurcata.


Subject(s)
Biological Products/pharmacology , Food Preservatives/pharmacology , Phaeophyceae/drug effects , Seaweed/chemistry , Animals , Antioxidants/pharmacology , Biological Products/chemistry , Ethanol/chemistry , Fishes , Food Preservation/methods , Gadiformes , Oxidation-Reduction/drug effects , Seafood , Water/chemistry
17.
Int J Food Microbiol ; 352: 109267, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34102464

ABSTRACT

The use of bacteriocins is a promising alternative to improve food security through the biocontrol of food pathogens and spoilage microorganisms. Gram-negative produced microcin J25(G12Y), known as (MccJ25(G12Y)) is a variant of the well-studied and characterized antimicrobial peptide, microcin J25 (MccJ25). In the present work, we explored the activity of this microcin against Gram-negative bacteria linked to foodborne diseases. We evaluated the in vitro antimicrobial activity of MccJ25(G12Y) in solid medium against a collection of pathogenic and food-altering strains and studied its activity and stability in meat and dairy food systems. We show that MccJ25(G12Y) exhibited the same in vitro antimicrobial spectrum as its parental microcin (MccJ25) against different Gram-negative foodborne pathogens and spoilage strains. We highlight that low concentrations of MccJ25(G12Y) between 0.45 and 29.4 µM were able to inhibit a substantial number of pathogens, including Salmonella, Escherichia, Shigella and Enterobacter genus. We also demonstrate the antimicrobial effectiveness of the peptide against Escherichia coli O157:H7 NCTC 12900, Enterobacter cloacae CECT 194, and Salmonella enterica CECT 4396 in fish and beef burgers and yogurt. MccJ25(G12Y) was added or not to food matrices inoculated with the foodborne pathogens at 105 CFU/g or mL. Afterward, food products were stored at 4 °C and selective media for the specific enumeration were used to determine the antimicrobial susceptibility of each pathogen to MccJ25(G12Y). The viability of the three pathogens was significantly reduced in the different food biological environments. In yogurt, the peptide decreased E. coli numbers on day 5 by about 4 log 10 CFU/mL as compared to non-treated samples. For S. enterica and E. cloacae no viable cells were detected at the end of the treatment. Adding MccJ25(G12Y) to fish burgers decreased E. cloacae numbers during storage 2 log10 CFU/g on the first day, reaching a difference of about 5 log 10 CFU/g after 10 days compared to non-treated control. Finally, the peptide decreased E. coli O157:H7 numbers on the beef burgers samples during storage on day 10 by about 3 log 10 CFU/g as compared to non-treated samples. The stability analysis demonstrated that MccJ25(G12Y) is capable of remaining active in these food matrices for a considerable time during the storage at refrigeration temperatures. These results reinforce the studies on the potential applicability of this microcin as a biopreservative in the food industry.


Subject(s)
Bacteriocins/pharmacology , Food Handling/methods , Food Microbiology , Gram-Negative Bacteria/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Escherichia coli O157/drug effects , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Salmonella/drug effects
18.
Sci Rep ; 11(1): 10175, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986380

ABSTRACT

Zebra mussel (Dreissena polymorpha) is considered as one of the 100 most harmful IAS in the world. Traditional detection methods have limitations, and PCR based environmental DNA detection has provided interesting results for early warning. However, in the last years, the development of isothermal amplification methods has received increasing attention. Among them, loop-mediated isothermal amplification (LAMP) has several advantages, including its higher tolerance to the presence of inhibitors and the possibility of naked-eye detection, which enables and simplifies its potential use in decentralized settings. In the current study, a real-time LAMP (qLAMP) method for the detection of Dreissena polymorpha was developed and tested with samples from the Guadalquivir River basin, together with two real-time PCR (qPCR) methods using different detection chemistries, targeting a specific region of the mitochondrial gene cytochrome C oxidase subunit I. All three developed approaches were evaluated regarding specificity, sensitivity and time required for detection. Regarding sensitivity, both qPCR approaches were more sensitive than qLAMP by one order of magnitude, however the qLAMP method proved to be as specific and much faster being performed in just 9 min versus 23 and 29 min for the qPCR methods based on hydrolysis probe and intercalating dye respectively.


Subject(s)
Dreissena/genetics , Environmental Monitoring/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Animals , DNA Primers , Genes, Mitochondrial/genetics , Introduced Species , Models, Theoretical , Real-Time Polymerase Chain Reaction/methods , Rivers , Spain , Time Factors
19.
Foods ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917943

ABSTRACT

The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.

20.
Methods Mol Biol ; 2259: 205-213, 2021.
Article in English | MEDLINE | ID: mdl-33687717

ABSTRACT

Classical and culture-based methods for the identification and characterization of the biochemical properties of microorganisms are slow and labor-intensive. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) has been used for the analysis of bacterial pathogen strain-specific diagnostic peptides allowing the characterization of bacterial strains.Here, we describe the analysis of tryptic digestion peptides by LC-ESI-MS/MS to search for specific biomarkers useful for the rapid identification of, on the one hand, the bacterial species and, on the other hand, the physiological and biochemical characteristics such as the expression of virulence factors, including toxins, immune-modulatory factors, and exoenzymes.


Subject(s)
Bacteria/isolation & purification , Bacterial Proteins/analysis , Food Microbiology , Proteomics/methods , Bacterial Proteins/isolation & purification , Chromatography, Liquid/methods , Software , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...