Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
CPT Pharmacometrics Syst Pharmacol ; 12(10): 1511-1528, 2023 10.
Article in English | MEDLINE | ID: mdl-37621010

ABSTRACT

We have built a quantitative systems toxicology modeling framework focused on the early prediction of oncotherapeutic-induced clinical intestinal adverse effects. The model describes stem and progenitor cell dynamics in the small intestinal epithelium and integrates heterogeneous epithelial-related processes, such as transcriptional profiles, citrulline kinetics, and probability of diarrhea. We fitted a mouse-specific version of the model to quantify doxorubicin and 5-fluorouracil (5-FU)-induced toxicity, which included pharmacokinetics and 5-FU metabolism and assumed that both drugs led to cell cycle arrest and apoptosis in stem cells and proliferative progenitors. The model successfully recapitulated observations in mice regarding dose-dependent disruption of proliferation which could lead to villus shortening, decrease of circulating citrulline, increased diarrhea risk, and transcriptional induction of the p53 pathway. Using a human-specific epithelial model, we translated the cytotoxic activity of doxorubicin and 5-FU quantified in mice into human intestinal injury and predicted with accuracy clinical diarrhea incidence. However, for gefitinib, a specific-molecularly targeted therapy, the mice failed to reproduce epithelial toxicity at exposures much higher than those associated with clinical diarrhea. This indicates that, regardless of the translational modeling approach, preclinical experimental settings have to be suitable to quantify drug-induced clinical toxicity with precision at the structural scale of the model. Our work demonstrates the usefulness of translational models at early stages of the drug development pipeline to predict clinical toxicity and highlights the importance of understanding cross-settings differences in toxicity when building these approaches.


Subject(s)
Citrulline , Drug-Related Side Effects and Adverse Reactions , Mice , Humans , Animals , Fluorouracil/toxicity , Fluorouracil/metabolism , Intestinal Mucosa/metabolism , Diarrhea/chemically induced , Doxorubicin/toxicity
2.
Toxicol Appl Pharmacol ; 459: 116342, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36502871

ABSTRACT

Functional changes to cardiomyocytes are undesirable during drug discovery and identifying the inotropic effects of compounds is hence necessary to decrease the risk of cardiovascular adverse effects in the clinic. Recently, approaches leveraging calcium transients in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed to detect contractility changes, induced by a variety of mechanisms early during drug discovery projects. Although these approaches have been able to provide some predictive ability, we hypothesised that using additional waveform parameters could offer improved insights, as well as predictivity. In this study, we derived 25 parameters from each calcium transient waveform and developed a modified Random Forest method to predict the inotropic effects of the compounds. In total annotated data for 48 compounds were available for modelling, out of which 31 were inotropes. The results show that the Random Forest model with a modified purity criterion performed slightly better than an unmodified algorithm in terms of the Area Under the Curve, giving values of 0.84 vs 0.81 in a cross-validation, and outperformed the ToxCast Pipeline model, for which the highest value was 0.76 when using the best-performing parameter, PW10. Our study hence demonstrates that more advanced parameters derived from waveforms, in combination with additional machine learning methods, provide improved predictivity of cardiovascular risk associated with inotropic effects.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Calcium , Machine Learning
3.
Stem Cell Reports ; 17(3): 556-568, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35148844

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes have been established to detect dynamic calcium transients by fast kinetic fluorescence assays that provide insights into specific aspects of clinical cardiac activity. However, the precise derivation and use of waveform parameters to predict cardiac activity merit deeper investigation. In this study, we derived, evaluated, and applied 38 waveform parameters in a novel Python framework, including (among others) peak frequency, peak amplitude, peak widths, and a novel parameter, shoulder-tail ratio. We then trained a random forest model to predict cardiac activity based on the 25 parameters selected by correlation analysis. The area under the curve (AUC) obtained for leave-one-compound-out cross-validation was 0.86, thereby replicating the predictions of conventional methods and outperforming fingerprint-based methods by a large margin. This work demonstrates that machine learning is able to automate the assessment of cardiovascular liability from waveform data, reducing any risk of user-to-user variability and bias.


Subject(s)
Induced Pluripotent Stem Cells , Calcium , Humans , Machine Learning , Myocytes, Cardiac
4.
Clin Transl Sci ; 14(3): 1133-1146, 2021 05.
Article in English | MEDLINE | ID: mdl-33620150

ABSTRACT

We applied a set of in silico and in vitro assays, compliant with the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm, to assess the risk of chloroquine (CLQ) or hydroxychloroquine (OH-CLQ)-mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin (ERT) and azithromycin (AZI), drugs repurposed during the first wave of coronavirus disease 2019 (COVID-19). Each drug or drug combination was tested in patch clamp assays on seven cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual Assay) using control (healthy) or high-risk cell populations, and in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. In each assay, concentration-response curves encompassing and exceeding therapeutic free plasma levels were generated. Both CLQ and OH-CLQ showed blocking activity against some potassium, sodium, and calcium currents. CLQ and OH-CLQ inhibited IKr (half-maximal inhibitory concentration [IC50 ]: 1 µM and 3-7 µM, respectively) and IK1 currents (IC50 : 5 and 44 µM, respectively). When combining OH-CLQ with AZI, no synergistic effects were observed. The two macrolides had no or very weak effects on the ion currents (IC50  > 300-1000 µM). Using Virtual Assay, both antimalarials affected several TdP indicators, CLQ being more potent than OH-CLQ. Effects were more pronounced in the high-risk cell population. In hiPSC-derived cardiomyocytes, all drugs showed early after-depolarizations, except AZI. Combining CLQ or OH-CLQ with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off-label use in COVID-19, CLQ and OH-CLQ use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination.


Subject(s)
Antimalarials/adverse effects , Arrhythmias, Cardiac/chemically induced , COVID-19 Drug Treatment , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Off-Label Use , SARS-CoV-2 , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Electrocardiography/drug effects , Humans , Ion Channels/drug effects
5.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190349, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32448065

ABSTRACT

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions-that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Subject(s)
Electrophysiological Phenomena , Models, Cardiovascular , Calibration , Ion Channels/metabolism
6.
Biophys J ; 117(12): 2420-2437, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31493859

ABSTRACT

Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer conventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-critical applications.


Subject(s)
Electrophysiological Phenomena , Ion Channels/metabolism , Models, Biological , Algorithms , Humans , Software
7.
Biophys J ; 117(12): 2455-2470, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31451180

ABSTRACT

Ion channel behavior can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating, and recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this article, we assess the validity of these representations by characterizing channel kinetics at multiple temperatures. We focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in drug safety assessment and commonly screened at room temperature so that results require extrapolation to physiological temperature. In Part I of this study, we established a reliable method for high-throughput characterization of hERG1a (Kv11.1) kinetics, using a 15-second information-rich optimized protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using Chinese hamster ovary cells overexpressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, with temperature control. We characterize the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37°C and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients; it broadly follows a generalized, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol dependent. Our results show that a direct fit using our 15-s protocol best represents hERG kinetics at any given temperature and suggests that using the Generalized Eyring theory is preferable if no experimental data are available to derive model parameters at a given temperature.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Models, Biological , Temperature , Animals , CHO Cells , Cricetulus , Humans , Kinetics
8.
Prog Biophys Mol Biol ; 139: 3-14, 2018 11.
Article in English | MEDLINE | ID: mdl-29842853

ABSTRACT

The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models.


Subject(s)
Electrophysiological Phenomena , Heart/physiology , Internet , Models, Cardiovascular , User-Computer Interface
9.
J Physiol ; 596(10): 1813-1828, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29573276

ABSTRACT

KEY POINTS: Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. ABSTRACT: Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches.


Subject(s)
Action Potentials , Capillaries/physiology , Ether-A-Go-Go Potassium Channels/physiology , Ion Channel Gating , Models, Theoretical , Animals , CHO Cells , Cricetinae , Cricetulus , Kinetics , Patch-Clamp Techniques
10.
Front Physiol ; 8: 917, 2017.
Article in English | MEDLINE | ID: mdl-29209226

ABSTRACT

The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a global initiative intended to improve drug proarrhythmia risk assessment using a new paradigm of mechanistic assays. Under the CiPA paradigm, the relative risk of drug-induced Torsade de Pointes (TdP) is assessed using an in silico model of the human ventricular action potential (AP) that integrates in vitro pharmacology data from multiple ion channels. Thus, modeling predictions of cardiac risk liability will depend critically on the variability in pharmacology data, and uncertainty quantification (UQ) must comprise an essential component of the in silico assay. This study explores UQ methods that may be incorporated into the CiPA framework. Recently, we proposed a promising in silico TdP risk metric (qNet), which is derived from AP simulations and allows separation of a set of CiPA training compounds into Low, Intermediate, and High TdP risk categories. The purpose of this study was to use UQ to evaluate the robustness of TdP risk separation by qNet. Uncertainty in the model parameters used to describe drug binding and ionic current block was estimated using the non-parametric bootstrap method and a Bayesian inference approach. Uncertainty was then propagated through AP simulations to quantify uncertainty in qNet for each drug. UQ revealed lower uncertainty and more accurate TdP risk stratification by qNet when simulations were run at concentrations below 5× the maximum therapeutic exposure (Cmax). However, when drug effects were extrapolated above 10× Cmax, UQ showed that qNet could no longer clearly separate drugs by TdP risk. This was because for most of the pharmacology data, the amount of current block measured was <60%, preventing reliable estimation of IC50-values. The results of this study demonstrate that the accuracy of TdP risk prediction depends both on the intrinsic variability in ion channel pharmacology data as well as on experimental design considerations that preclude an accurate determination of drug IC50-values in vitro. Thus, we demonstrate that UQ provides valuable information about in silico modeling predictions that can inform future proarrhythmic risk evaluation of drugs under the CiPA paradigm.

11.
12.
Front Physiol ; 8: 616, 2017.
Article in English | MEDLINE | ID: mdl-28878692

ABSTRACT

Drug-induced Torsade-de-Pointes (TdP) has been responsible for the withdrawal of many drugs from the market and is therefore of major concern to global regulatory agencies and the pharmaceutical industry. The Comprehensive in vitro Proarrhythmia Assay (CiPA) was proposed to improve prediction of TdP risk, using in silico models and in vitro multi-channel pharmacology data as integral parts of this initiative. Previously, we reported that combining dynamic interactions between drugs and the rapid delayed rectifier potassium current (IKr) with multi-channel pharmacology is important for TdP risk classification, and we modified the original O'Hara Rudy ventricular cell mathematical model to include a Markov model of IKr to represent dynamic drug-IKr interactions (IKr-dynamic ORd model). We also developed a novel metric that could separate drugs with different TdP liabilities at high concentrations based on total electronic charge carried by the major inward ionic currents during the action potential. In this study, we further optimized the IKr-dynamic ORd model by refining model parameters using published human cardiomyocyte experimental data under control and drug block conditions. Using this optimized model and manual patch clamp data, we developed an updated version of the metric that quantifies the net electronic charge carried by major inward and outward ionic currents during the steady state action potential, which could classify the level of drug-induced TdP risk across a wide range of concentrations and pacing rates. We also established a framework to quantitatively evaluate a system's robustness against the induction of early afterdepolarizations (EADs), and demonstrated that the new metric is correlated with the cell's robustness to the pro-EAD perturbation of IKr conductance reduction. In summary, in this work we present an optimized model that is more consistent with experimental data, an improved metric that can classify drugs at concentrations both near and higher than clinical exposure, and a physiological framework to check the relationship between a metric and EAD. These findings provide a solid foundation for using in silico models for the regulatory assessment of TdP risk under the CiPA paradigm.

13.
J Pharmacol Toxicol Methods ; 68(1): 88-96, 2013.
Article in English | MEDLINE | ID: mdl-23624022

ABSTRACT

INTRODUCTION: Drugs that prolong the QT interval on the electrocardiogram present a major safety concern for pharmaceutical companies and regulatory agencies. Despite a range of assays performed to assess compound effects on the QT interval, QT prolongation remains a major cause of attrition during compound development. In silico assays could alleviate such problems. In this study we evaluated an in silico method of predicting the results of a rabbit left-ventricular wedge assay. METHODS: Concentration-effect data were acquired from either: the high-throughput IonWorks/FLIPR; the medium-throughput PatchXpress ion channel assays; or QSAR, a statistical IC50 value prediction model, for hERG, fast sodium, L-type calcium and KCNQ1/minK channels. Drug block of channels was incorporated into a mathematical differential equation model of rabbit ventricular myocyte electrophysiology through modification of the maximal conductance of each channel by a factor dependent on the IC50 value, Hill coefficient and concentration of each compound tested. Simulations were performed and agreement with experimental results, based upon input data from the different assays, was evaluated. RESULTS: The assay was found to be 78% accurate, 72% sensitive and 81% specific when predicting QT prolongation (>10%) using PatchXpress assay data (77 compounds). Similar levels of predictivity were demonstrated using IonWorks/FLIPR data (121 compounds) with 78% accuracy, 73% sensitivity and 80% specificity. QT shortening (<-10%) was predicted with 77% accuracy, 33% sensitivity and 90% specificity using PatchXpress data and 71% accuracy, 42% sensitivity and 81% specificity using IonWorks/FLIPR data. Strong quantitative agreement between simulation and experimental results was also evident. DISCUSSION: The in silico action potential assay demonstrates good predictive ability, and is suitable for very high-throughput use in early drug development. Adoption of such an assay into cardiovascular safety assessment, integrating ion channel data from routine screens to infer results of animal-based tests, could provide a cost- and time-effective cardiac safety screen.


Subject(s)
Computer Simulation , Drug Design , Long QT Syndrome/chemically induced , Models, Theoretical , Animals , Dose-Response Relationship, Drug , Electrocardiography , Female , Heart Ventricles/drug effects , Heart Ventricles/metabolism , High-Throughput Screening Assays/methods , Inhibitory Concentration 50 , Ion Channels/drug effects , Ion Channels/metabolism , Long QT Syndrome/diagnosis , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Predictive Value of Tests , Quantitative Structure-Activity Relationship , Rabbits , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...