Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(12): 8130-8139, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37294287

ABSTRACT

Pulmonary arterial hypertension (PAH) is a devastating rare disease, which despite currently available treatments, still represents a high unmet medical need. Specific E3 ubiquitin protein ligase 1 (SMURF1) is a HECT E3 ligase that ubiquitinates key signaling molecules from the TGFß/BMP pathways, which are of great relevance in the pathophysiology of PAH. Herein, the design and synthesis of novel potent small-molecule SMURF1 ligase inhibitors are described. Lead molecule 38 has demonstrated good oral pharmacokinetics in rats and significant efficacy in a rodent model of pulmonary hypertension.


Subject(s)
Pulmonary Arterial Hypertension , Ubiquitin-Protein Ligases , Rats , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination , Lung/metabolism
2.
J Med Chem ; 59(16): 7544-60, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27502541

ABSTRACT

Cancer Osaka thyroid (COT) kinase is an important regulator of pro-inflammatory cytokines in macrophages. Thus, pharmacologic inhibition of COT should be a valid approach to therapeutically intervene in the pathogenesis of macrophage-driven inflammatory diseases such as rheumatoid arthritis. We report the discovery and chemical optimization of a novel series of COT kinase inhibitors, with unprecedented nanomolar potency for the inhibition of TNFα. Pharmacological profiling in vivo revealed a high metabolism of these compounds in rats which was demonstrated to be predominantly attributed to aldehyde oxidase. Due to the very low activity of hepatic AO in the dog, the selected candidate 32 displayed significant blood exposure in dogs which resulted in a clear prevention of inflammation-driven lameness. Taken together, the described compounds both potently and selectively inhibit COT kinase in primary human cells and ameliorate inflammatory pathologies in vivo, supporting the notion that COT is an appropriate therapeutic target for inflammatory diseases.


Subject(s)
Drug Discovery , Imidazoles/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Quinolines/pharmacology , Animals , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , MAP Kinase Kinase Kinases/metabolism , Male , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/metabolism , Quinolines/chemical synthesis , Quinolines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors
3.
Bioorg Med Chem Lett ; 20(17): 5161-4, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20685119

ABSTRACT

A series of novel benzimidazole derivatives has been designed via a scaffold morphing approach based on known calcilytics chemotypes. Subsequent lead optimisation led to the discovery of penta-substituted benzimidazoles that exhibit attractive in vitro and in vivo calcium-sensing receptor (CaSR) inhibitory profiles. In addition, synthesis and structure-activity relationship data are provided.


Subject(s)
Benzimidazoles/pharmacology , Receptors, Calcium-Sensing/antagonists & inhibitors , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Models, Molecular , Structure-Activity Relationship
4.
J Med Chem ; 53(5): 2250-63, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20158186

ABSTRACT

Parathyroid hormone (PTH) is an effective bone anabolic agent. However, only when administered by daily sc injections exposure of short duration is achieved, a prerequisite for an anabolic response. Instead of applying exogenous PTH, mobilization of endogenous stores of the hormone can be envisaged. The secretion of PTH stored in the parathyroid glands is mediated by a calcium sensing receptor (CaSR) a GPCR localized at the cell surface. Antagonists of CaSR (calcilytics) mimic a state of hypocalcaemia and stimulate PTH release to the bloodstream. Screening of the internal compound collection for inhibition of CaSR signaling function afforded 2a. In vitro potency could be improved >1000 fold by optimization of its chemical structure. The binding mode of our compounds was predicted based on molecular modeling and confirmed by testing with mutated receptors. While the compounds readily induced PTH release after iv application a special formulation was needed for oral activity. The required profile was achieved by using microemulsions. Excellent PK/PD correlation was found in rats and dogs. High levels of PTH were reached in plasma within minutes which reverted to baseline in about 1-2 h in both species.


Subject(s)
Bone Density Conservation Agents/chemical synthesis , Parathyroid Hormone/metabolism , Quinazolinones/chemical synthesis , Receptors, Calcium-Sensing/metabolism , Administration, Oral , Animals , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacokinetics , Dogs , Inhibitory Concentration 50 , Male , Quinazolinones/administration & dosage , Quinazolinones/chemistry , Quinazolinones/pharmacokinetics , Rats , Rats, Wistar , Receptors, Calcium-Sensing/antagonists & inhibitors , Receptors, Calcium-Sensing/genetics , Structure-Activity Relationship
5.
J Biol Chem ; 282(32): 23231-9, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17556356

ABSTRACT

Inverse agonists of the constitutively active human estrogen-related receptor alpha (ERRalpha, NR3B1) are of potential interest for several disease indications (e.g. breast cancer, metabolic diseases, or osteoporosis). ERRalpha is constitutively active, because its ligand binding pocket (LBP) is practically filled with side chains (in particular with Phe(328), which is replaced by Ala in ERRbeta and ERRgamma). We present here the crystal structure of the ligand binding domain of ERRalpha (containing the mutation C325S) in complex with the inverse agonist cyclohexylmethyl-(1-p-tolyl-1H-indol-3-ylmethyl)-amine (compound 1a), to a resolution of 2.3A(.) The structure reveals the dramatic multiple conformational changes in the LBP, which create the necessary space for the ligand. As a consequence of the new side chain conformation of Phe(328) (on helix H3), Phe(510)(H12) has to move away, and thus the activation helix H12 is displaced from its agonist position. This is a novel mechanism of H12 inactivation, different from ERRgamma, estrogen receptor (ER) alpha, and ERbeta. H12 binds (with a surprising binding mode) in the coactivator groove of its ligand binding domain, at a similar place as a coactivator peptide. This is in contrast to ERRgamma but resembles the situation for ERalpha (raloxifene or 4-hydroxytamoxifen complexes). Our results explain the novel molecular mechanism of an inverse agonist for ERRalpha and provide the basis for rational drug design to obtain isotype-specific inverse agonists of this potential new drug target. Despite a practically filled LBP, the finding that a suitable ligand can induce an opening of the cavity also has broad implications for other orphan nuclear hormone receptors (e.g. the NGFI-B subfamily).


Subject(s)
Receptors, Estrogen/chemistry , Crystallography, X-Ray , Drug Design , Estrogen Receptor alpha/chemistry , Humans , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...