Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Science ; 383(6680): eadf2341, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38236959

ABSTRACT

Liquid biopsies enable early detection and monitoring of diseases such as cancer, but their sensitivity remains limited by the scarcity of analytes such as cell-free DNA (cfDNA) in blood. Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. We sought to transiently augment the level of circulating tumor DNA (ctDNA) in a blood draw by attenuating its clearance in vivo. We report two intravenous priming agents given 1 to 2 hours before a blood draw to recover more ctDNA. Our priming agents consist of nanoparticles that act on the cells responsible for cfDNA clearance and DNA-binding antibodies that protect cfDNA. In tumor-bearing mice, they greatly increase the recovery of ctDNA and improve the sensitivity for detecting small tumors.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Animals , Mice , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/blood , Circulating Tumor DNA/blood , Liquid Biopsy , Mutation , Neoplasms/blood , Neoplasms/diagnosis , Humans , Female , Mice, Inbred BALB C , Sensitivity and Specificity
2.
bioRxiv ; 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36711603

ABSTRACT

Liquid biopsies are enabling minimally invasive monitoring and molecular profiling of diseases across medicine, but their sensitivity remains limited by the scarcity of cell-free DNA (cfDNA) in blood. Here, we report an intravenous priming agent that is given prior to a blood draw to increase the abundance of cfDNA in circulation. Our priming agent consists of nanoparticles that act on the cells responsible for cfDNA clearance to slow down cfDNA uptake. In tumor-bearing mice, this agent increases the recovery of circulating tumor DNA (ctDNA) by up to 60-fold and improves the sensitivity of a ctDNA diagnostic assay from 0% to 75% at low tumor burden. We envision that this priming approach will significantly improve the performance of liquid biopsies across a wide range of clinical applications in oncology and beyond.

3.
Adv Healthc Mater ; 11(11): e2102685, 2022 06.
Article in English | MEDLINE | ID: mdl-35182107

ABSTRACT

Blood clotting disorders such as pulmonary embolism are associated with high morbidity and mortality. A large portion of thrombotic events occur postoperative and after hospital discharge. Therefore, easily applicable, noninvasive, and long-term monitoring of thrombosis occurrence is critical for urgent clinical intervention. Here, the use is proposed of ionic liquids as a skin transport facilitator to deliver thrombin-sensitive nanosensors that enable prolonged monitoring of pulmonary embolism. Co-formulation of nanosensors with choline and geranic acid (CAGE) ionic liquids demonstrates significant transdermal diffusion into the dermis of the skin and provides sustained release into the blood throughout 72 h. Upon reaching the systemic circulation, the nanosensors release reporter molecules into the urine by responding to activation of the clotting cascade and retain a diagnostic power for 24 h in an acute pulmonary embolism mouse model. These results demonstrate a proof-of-concept disease monitoring system that can be topically applied by patients and potentially reduce mortality and high cost of hospitalization.


Subject(s)
Ionic Liquids , Pulmonary Embolism , Thrombosis , Administration, Cutaneous , Animals , Humans , Mice , Skin Absorption , Thrombosis/drug therapy
4.
Cancer Res ; 81(1): 213-224, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33106334

ABSTRACT

Recent years have seen the emergence of conditionally activated diagnostics and therapeutics that leverage protease-cleavable peptide linkers to enhance their specificity for cancer. However, due to a lack of methods to measure and localize protease activity directly within the tissue microenvironment, the design of protease-activated agents has been necessarily empirical, yielding suboptimal results when translated to patients. To address the need for spatially resolved protease activity profiling in cancer, we developed a new class of in situ probes that can be applied to fresh-frozen tissue sections in a manner analogous to immunofluorescence staining. These activatable zymography probes (AZP) detected dysregulated protease activity in human prostate cancer biopsy samples, enabling disease classification. AZPs were leveraged within a generalizable framework to design conditional cancer diagnostics and therapeutics and showcased in the Hi-Myc mouse model of prostate cancer, which models features of early pathogenesis. Multiplexed screening against barcoded substrates yielded a peptide, S16, that was robustly and specifically cleaved by tumor-associated metalloproteinases in the Hi-Myc model. In situ labeling with an AZP incorporating S16 revealed a potential role of metalloproteinase dysregulation in proliferative, premalignant Hi-Myc prostatic glands. Systemic administration of an in vivo imaging probe incorporating S16 perfectly classified diseased and healthy prostates, supporting the relevance of ex vivo activity assays to in vivo translation. We envision AZPs will enable new insights into the biology of protease dysregulation in cancer and accelerate the development of conditional diagnostics and therapeutics for multiple cancer types. SIGNIFICANCE: Visualization of protease activity within the native tissue context using AZPs provides new biological insights into protease dysregulation in cancer and guides the design of conditional diagnostics and therapeutics.


Subject(s)
Disease Models, Animal , Molecular Probes/chemistry , Peptide Hydrolases/analysis , Peptide Hydrolases/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Animals , Humans , Male , Mice , Molecular Imaging , Prostatic Neoplasms/enzymology , Proteolysis
5.
Proc Natl Acad Sci U S A ; 117(31): 18470-18476, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690682

ABSTRACT

Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature's engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiol ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Gold/chemistry , Lipid Bilayers/metabolism , Metal Nanoparticles/chemistry , Calcium/chemistry , Cell Membrane/chemistry , Gold/metabolism , Humans , Lipid Bilayers/chemistry , Membrane Fusion , Molecular Dynamics Simulation , SNARE Proteins/metabolism , Tissue Array Analysis
6.
PLoS One ; 15(3): e0224002, 2020.
Article in English | MEDLINE | ID: mdl-32191706

ABSTRACT

Reproducibility of results is essential for a well-designed and conducted experiment. Several reasons may originate failure in reproducing data, such as selective reporting, low statistical power, or poor analysis. In this study, we used PEG6000 samples from different distributors and tested their capability inducing spheroid formation upon surface coating. MALDI-MS, NMR, FTIR, and Triple SEC analysis of the different PEG60000s showed nearly identical physicochemical properties different, with only minor differences in mass and hydrodynamic radius, and AFM analysis showed no significant differences in the surface coatings obtained with the available PEG6000s. Despite these similarities, just one showed a highly reproducible formation of spheroids with different cell lines, such as HT-29, HeLa, Caco2, and PANC-1. Using the peculiar PEG6000 sample and a reference PEG6000 chosen amongst the others as control, we tested the effect of the cell/PEG interaction by incubating cells in the PEG solution prior to cell plating. These experiments indicate that the spheroid formation is due to direct interaction of the polymer with the cells rather than by interaction of cells with the coated surfaces. The experiments point out that for biological entities, such as cells or tissues, even very small differences in impurities or minimal variations in the starting product can have a very strong impact on the reproducibility of data.


Subject(s)
Reproducibility of Results , Spheroids, Cellular/metabolism , Caco-2 Cells , Calorimetry, Differential Scanning , Cell Culture Techniques , Chromatography, Gel , HT29 Cells , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Surface Properties
7.
Nat Nanotechnol ; 14(9): 883-890, 2019 09.
Article in English | MEDLINE | ID: mdl-31477801

ABSTRACT

Ultrasmall gold nanoclusters (AuNCs) have emerged as agile probes for in vivo imaging, as they exhibit exceptional tumour accumulation and efficient renal clearance properties. However, their intrinsic catalytic activity, which can enable an increased detection sensitivity, has yet to be explored for in vivo sensing. By exploiting the peroxidase-mimicking activity of AuNCs and the precise nanometre-size filtration of the kidney, we designed multifunctional protease nanosensors that respond to disease microenvironments to produce a direct colorimetric urinary readout of the disease state in less than one hour. We monitored the catalytic activity of AuNCs in the collected urine of a mouse model of colorectal cancer in which tumour-bearing mice showed a 13-fold increase in colorimetric signal compared to healthy mice. The nanosensors were eliminated completely through hepatic and renal excretion within four weeks of injection with no evidence of toxicity. We envision that this modular approach will enable the rapid detection of a diverse range of diseases by exploiting their specific enzymatic signatures.


Subject(s)
Gold/metabolism , Kidney/metabolism , Metal Nanoparticles , Peptides/metabolism , Urinalysis/methods , Animals , Colorectal Neoplasms/urine , Colorimetry/methods , Female , Metal Nanoparticles/ultrastructure , Mice , Peroxidase/metabolism
8.
Lab Chip ; 19(5): 778-788, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30714604

ABSTRACT

We present a methodology for building biologically inspired, soft microelectromechanical systems (MEMS) devices. Our strategy combines several advanced techniques including programmable colloidal self-assembly, light-harvesting with plasmonic nanotransducers, and in situ polymerization of compliant hydrogel mechanisms. We synthesize optomechanical microactuators using a template-assisted microfluidic approach in which gold nanorods coated with thermoresponsive poly(N-isopropylmethacrylamide) (pNIPMAM) polymer function as nanoscale building blocks. The resulting microactuators exhibit mechanical properties (4.8 ± 2.1 kPa stiffness) and performance metrics (relative stroke up to 0.3 and stress up to 10 kPa) that are comparable to that of bioengineered muscular constructs. Near-infrared (NIR) laser illumination provides effective spatiotemporal control over actuation (sub-micron spatial resolution at millisecond temporal resolution). Spatially modulated hydrogel photolithography guided by an experimentally validated finite element-based design methodology allows construction of compliant poly(ethylene glycol) diacrylate (PEGDA) mechanisms around the microactuators. We demonstrate the versatility of our approach by manufacturing a diverse array of microdevices including lever arms, continuum microrobots, and dexterous microgrippers. We present a microscale compression device that is developed for mechanical testing of three-dimensional biological samples such as spheroids under physiological conditions.


Subject(s)
Micro-Electrical-Mechanical Systems , Microfluidic Analytical Techniques , Robotics , Micro-Electrical-Mechanical Systems/instrumentation , Microfluidic Analytical Techniques/instrumentation , Polymers/chemistry , Robotics/instrumentation
9.
Colloids Surf B Biointerfaces ; 174: 367-373, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30472623

ABSTRACT

Nonspecific protein adhesion to nanoparticle (NP) has been proven to have important implications in nanomedicine. However, there are only a few examples of careful studies relating protein binding thermodynamics to NP physicochemical features. In particular, a systematic investigation of how NP/protein binding parameters scale with size for sub-10 nm NPs and whether this scaling is affected by the surface feature of NPs remain unaddressed. Previously, we have developed an analytical ultracentrifugation (AUC) based method to determine NP/protein binding thermodynamic parameters that was shown to be particularly effective for sub-10 nm NPs. In this work, we exclusively utilize this method to investigate the binding parameters for a well-defined set of gold NPs with varying size and surface ligand ratios to the model protein human serum albumin. We find that gold NPs with a homogenous distribution of hydrophilic molecules in their ligand shell have a monotonic dependence of their binding constants and of the maximum number of bound proteins as a function of their surface area. On the other hand, a more complex relation is found for particles with patchy ligand shell. The findings of this research highlight the significance of surface morphology on the interplay between protein binding behavior and NP size.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Serum Albumin, Human/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Serum Albumin, Human/chemistry , Thermodynamics
10.
Biomaterials ; 190-191: 111-120, 2019 01.
Article in English | MEDLINE | ID: mdl-30415018

ABSTRACT

Although immunotherapy shows great promise for the long-term control of cancer, many tumors still fail to respond to treatment. To improve the outcome, the delivery of immunostimulants to the lymph nodes draining the tumor, where the antitumor immune response is initiated, is key. Efforts to use nanoparticles as carriers for cancer immunotherapy have generally required targeting agents and chemical modification of the drug, and have unfortunately resulted in low delivery and therapeutic efficiency. Here, we report on the efficacy of gold nanoparticles with approximately 5 nm hydrodynamic diameter coated with a mixture of 1-octanethiol and 11-mercaptoundecanesulfonic acid for the delivery of an immunostimulatory TLR7 ligand to tumor-draining lymph nodes. The drug was loaded without modification through nonspecific adsorption into the ligand shell of the nanoparticles, taking advantage of their amphiphilic nature. After loading, nanoparticles retained their stability in solution without significant premature release of the drug, and the drug cargo was immunologically active. Upon subcutaneous injection into tumor-bearing mice, the drug-loaded particles were rapidly transported to the tumor-draining lymph nodes. There, they induced a local immune activation and fostered a cytotoxic T-cell response that was specific for the tumor. Importantly, the particle-delivered TLR7 ligand blocked the growth of large established tumors and significantly prolonged survival compared to the free form of the drug. Thus, we demonstrate for the first time that nanoparticle delivery of a TLR7 immunostimulant to the tumor-draining lymph nodes enhances antitumor immunity and improves the outcome of cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Colonic Neoplasms/therapy , Drug Carriers/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Toll-Like Receptor 7/agonists , Adjuvants, Immunologic/therapeutic use , Animals , Cell Line , Cell Line, Tumor , Colonic Neoplasms/immunology , Drug Delivery Systems , Female , Humans , Immunotherapy , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice, Inbred C57BL , Toll-Like Receptor 7/immunology
11.
Biomater Sci ; 7(1): 113-124, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30444251

ABSTRACT

We sought to develop a nanoparticle vehicle that could efficiently deliver small molecule drugs to target lymphocyte populations. The synthesized amphiphilic organic ligand-protected gold nanoparticles (amph-NPs) were capable of sequestering large payloads of small molecule drugs within hydrophobic pockets of their ligand shells. These particles exhibit membrane-penetrating activity in mammalian cells, and thus enhanced uptake of a small molecule TGF-ß inhibitor in T cells in cell culture. By conjugating amph-NPs with targeting antibodies or camelid-derived nanobodies, the particles' cell-penetrating properties could be temporarily suppressed, allowing targeted uptake in specific lymphocyte subpopulations. Degradation of the protein targeting moieties following particle endocytosis allowed the NPs to recover their cell-penetrating activity in situ to enter the cytoplasm of T cells. In vivo, targeted amph-NPs showed 40-fold enhanced uptake in CD8+ T cells relative to untargeted particles, and delivery of TGF-ß inhibitor-loaded particles to T cells enhanced their cytokine polyfunctionality in a cancer vaccine model. Thus, this system provides a facile approach to concentrate small molecule compounds in target lymphocyte populations of interest for immunotherapy in cancer and other diseases.


Subject(s)
Drug Delivery Systems , Gold/chemistry , Immunoconjugates/chemistry , Metal Nanoparticles/chemistry , Small Molecule Libraries/administration & dosage , T-Lymphocytes/drug effects , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Cells, Cultured , Female , Gold/pharmacokinetics , Immunoconjugates/pharmacokinetics , Mice, Inbred C57BL , Small Molecule Libraries/pharmacology , T-Lymphocytes/immunology , Transforming Growth Factor beta/analysis
12.
Bioconjug Chem ; 29(4): 1131-1140, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29465986

ABSTRACT

The development of synthetic nanomaterials that could embed within, penetrate, or induce fusion between membranes without permanent disruption would have great significance for biomedical applications. Here we describe structure-function relationships of highly water-soluble gold nanoparticles comprised of an ∼1.5-5 nm diameter metal core coated by an amphiphilic organic ligand shell, which exhibit membrane embedding and fusion activity mediated by the surface ligands. Using an environment-sensitive dye anchored within the ligand shell as a sensor of membrane embedding, we demonstrate that particles with core sizes of ∼2-3 nm are capable of embedding within and penetrating fluid bilayers. At the nanoscale, these particles also promote spontaneous fusion of liposomes or spontaneously embed within intact liposomal vesicles. These studies provide nanoparticle design and selection principles that could be used in drug delivery applications, as membrane stains, or for the creation of novel organic/inorganic nanomaterial self-assemblies.


Subject(s)
Lipid Bilayers , Membrane Fusion , Nanoparticles/chemistry , Permeability , Boron Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Ligands , Liposomes , Particle Size , Static Electricity , Structure-Activity Relationship
13.
Nat Mater ; 17(2): 195-203, 2018 02.
Article in English | MEDLINE | ID: mdl-29251725

ABSTRACT

Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism.  These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.


Subject(s)
Antiviral Agents , Biomimetic Materials , Herpes Simplex/drug therapy , Herpesvirus 2, Human/metabolism , Nanoparticles , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Heparan Sulfate Proteoglycans/chemistry , Heparan Sulfate Proteoglycans/pharmacology , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/pathology
15.
Nat Commun ; 8: 14069, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094297

ABSTRACT

Inorganic nanoparticles (NPs) are studied as drug carriers, radiosensitizers and imaging agents, and characterizing nanoparticle biodistribution is essential for evaluating their efficacy and safety. Tracking NPs at the single-cell level with current technologies is complicated by the lack of reliable methods to stably label particles over extended durations in vivo. Here we demonstrate that mass cytometry by time-of-flight provides a label-free approach for inorganic nanoparticle quantitation in cells. Furthermore, mass cytometry can enumerate AuNPs with a lower detection limit of ∼10 AuNPs (3 nm core size) in a single cell with tandem multiparameter cellular phenotyping. Using the cellular distribution insights, we selected an amphiphilic surface ligand-coated AuNP that targeted myeloid dendritic cells in lymph nodes as a peptide antigen carrier, substantially increasing the efficacy of a model vaccine in a B16-OVA melanoma mouse model. This technology provides a powerful new level of insight into nanoparticle fate in vivo.


Subject(s)
Gold/analysis , Mass Spectrometry/methods , Metal Nanoparticles/analysis , Single-Cell Analysis/methods , Animals , Dendritic Cells/chemistry , Dendritic Cells/metabolism , Drug Carriers/chemistry , Female , Melanoma/drug therapy , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Tissue Distribution , Vaccines/administration & dosage , Vaccines/chemistry , Vaccines/metabolism
16.
Nat Commun ; 7: 13121, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762263

ABSTRACT

Nanomedicine requires in-depth knowledge of nanoparticle-protein interactions. These interactions are studied with methods limited to large or fluorescently labelled nanoparticles as they rely on scattering or fluorescence-correlation signals. Here, we have developed a method based on analytical ultracentrifugation (AUC) as an absorbance-based, label-free tool to determine dissociation constants (KD), stoichiometry (Nmax), and Hill coefficient (n), for the association of bovine serum albumin (BSA) with gold nanoparticles. Absorption at 520 nm in AUC renders the measurements insensitive to unbound and aggregated proteins. Measurements remain accurate and do not become more challenging for small (sub-10 nm) nanoparticles. In AUC, frictional ratio analysis allows for the qualitative assessment of the shape of the analyte. Data suggests that small-nanoparticles/protein complexes significantly deviate from a spherical shape even at maximum coverage. We believe that this method could become one of the established approaches for the characterization of the interaction of (small) nanoparticles with proteins.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Serum Albumin, Bovine/chemistry , Ultracentrifugation/methods , Gold/metabolism , Protein Binding
17.
Nanoscale ; 7(26): 11420-32, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26077112

ABSTRACT

Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long lifespan in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation. Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a ∼2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte 'pharmacytes' in vivo.


Subject(s)
Erythrocyte Membrane/chemistry , Erythrocyte Membrane/ultrastructure , Glycocalyx/chemistry , Glycocalyx/ultrastructure , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Metal Nanoparticles/ultrastructure
18.
PLoS One ; 10(5): e0126420, 2015.
Article in English | MEDLINE | ID: mdl-25997164

ABSTRACT

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.


Subject(s)
Ultracentrifugation/methods , Ultracentrifugation/standards , Calibration , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL