Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474613

ABSTRACT

Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.


Subject(s)
Flour , Fruit , Humans , Fruit/chemistry , Flour/analysis , Antioxidants/analysis , Sugars/analysis , Vegans , Food Handling/methods , Carbohydrates/analysis , Plant Extracts/analysis
2.
Molecules ; 29(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276603

ABSTRACT

Extra virgin olive oil (EVOO) is a valuable product and is highly appreciated by consumers for its great nutritional value. However, to date, there has been a lack of uniform systems capable of ranking the nutritional value of EVOO based on its chemical composition in terms of macro- and micronutrients (including phenolic compounds and tocopherols). The aim of this study was to propose a scoring algorithm to rank the nutritional value of EVOO samples, considering their chemical composition in macro- and micronutrients and their sensitivity to oxidation phenomena. Data from more than 1000 EVOO samples were used to assess the variability of the data, considering the selected negative parameters (free acidity, peroxide value, spectrophotometric indices) and positive components (composition in tocopherols via HPLC-DAD, phenolic compounds via HPLC-DAD, and fatty acids via GC-MS) so as to ensure the universal validity of the scoring algorithm. The dataset included samples from the main producing countries worldwide, in addition to Australia, across several production years; data were selected to represent different production realities. A mathematical model was set up for each chemical component, resulting in six variable values. By combining these values with a dimensionless constant value, the algorithm for computing the nutritional value score (NVS) was defined. It allows the nutritional value of an oil to be ranked on a scale of 0 to 100 based on its chemical composition. The algorithm was then successfully tested using chemical data from about 300 EVOO samples obtained from laboratories from different Italian regions. The proposed NVS is a simple and objective tool for scoring the nutritional value of an EVOO, easy to understand for both producers and consumers.


Subject(s)
Olea , Olive Oil/chemistry , Olea/chemistry , Phenols/chemistry , Tocopherols/analysis , Nutritive Value , Micronutrients
3.
Food Chem ; 440: 138272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38159318

ABSTRACT

Red cabbage (RC) represents a source of anthocyanins acylated with hydroxycinnamic acids (HCA) that are described to enhance their stability. Nevertheless, data about their thermal degradation are still controversial. Our aim was to comprehensively analyse the degradation kinetics of individual RC anthocyanins in a model aqueous extract treated at 40 °C × 30 days to simulate severe but realistic storage conditions. Free anthocyanins and radical-scavenging capacity showed different kinetics. The results confirm the high stability of RC anthocyanins (t1/2: 16.4-18.4 days), although HPLC analyses of each molecule displayed distinct kinetics with t1/2 from 12.6 to 35.1 days. In particular, the sinapoyl acylation negatively affected the stability of the anthocyanins, while the forms monoacylated with glycosyl p-coumaric and ferulic acids exhibited higher stability. In conclusion, our results indicate that acylation is not a prerogative of stability, as this is instead more dependent on specific acylation patterns and the glycosylation of HCA.


Subject(s)
Anthocyanins , Brassica , Anthocyanins/metabolism , Brassica/metabolism , Acylation , Chromatography, High Pressure Liquid/methods
4.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068976

ABSTRACT

Fruits and vegetables processing produces significant amounts of by-products rich in valuable bioactive compounds such as polyphenols and dietary fiber. Food by-product re-use promotes the eco-sustainability of several crops. This study aimed to apply green extractions of bioactive compounds from by-products of basil, tomato, and red bell pepper production. Tests were performed by applying extraction procedures both at laboratory scale and using the Timatic® extractor. Water and ethanol 10% and 20% were used for extraction of red bell pepper and tomato, testing different temperatures (30, 50, and 90 °C; water at 90 °C and ethanol 20% were applied for basil. The obtained phenolic extracts were analyzed by HPLC-DAD-MS. Polysaccharides of tomato and red bell pepper were extracted at laboratory scale and chemically characterized using 1H-NMR to define the methylation and acylation degree, and DLS to estimate the hydrodynamic volume. Laboratory extraction tests allowed efficient scaling-up of the process on the Timatic® extractor. Phenolic content in the dried extracts (DE) ranged 8.0-11.2 mg/g for tomato and red bell pepper and reached 240 mg/g for basil extracts. Polysaccharide yields (w/w on DM) reached 6.0 and 10.4% for dried tomato and red bell pepper, respectively. Dry extracts obtained using the Timatic® extractor and water can be useful sources of bioactive phenols. The study provided new data on tomato and red bell pepper polysaccharides that may be useful for future applications.


Subject(s)
Capsicum , Ocimum basilicum , Solanum lycopersicum , Capsicum/chemistry , Polyphenols , Ethanol , Water
5.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37895846

ABSTRACT

Chlorogenic acids, the esters of caffeic and quinic acids, are the main phenolic acids detected in Acmella oleracea extracts and have gained increasing interest in recent years due to their important biological activities. Given their structural similarity and instability, the correct analysis and identification of these compounds in plants is challenging. This study aimed to propose a simple and rapid determination of the A. oleracea caffeoylquinic isomers, applying an HPLC-MS/MS method supported by a mathematical algorithm (Linear Equation of Deconvolution Analysis (LEDA)). The three mono- and the three di-caffeoylquinic acids in roots of Acmella plants were studied by an ion trap MS analyzer. A separation by a conventional chromatographic method was firstly performed and an MS/MS characterization by energetic dimension of collision-induced dissociation mechanism was carried out. The analyses were then replicated using a short HPLC column and a fast elution gradient (ten minutes). Each acquired MS/MS data were processed by LEDA algorithm which allowed to assign a relative abundance in the reference ion signal to each isomer present. Quantitative results showed no significant differences between the two chromatographic systems proposed, proving that the use of LEDA algorithm allowed the distinction of the six isomers in a quarter of the time.

6.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687168

ABSTRACT

Proso millet has been proposed as an effective anti-diabetic food thanks to the combined action of polyphenols and starch. This study aimed to characterize the chemical composition of twenty-five accessions, in order to enhance this cereal as an alternative to available starch for food applications or to propose new food ingredients with health benefits. Proso millet contained a high percentage of starch, reaching values of 58.51%. The amylose content showed high variability, with values ranging from 1.36 to 42.70%, and significantly higher values were recorded for the white accessions than for the colored ones. High-resistant starch content (13.41-26.07%) was also found. The HPLC-MS analysis showed the same phenolic pattern in all the samples. Cinnamic acids are the most abundant compounds and significant differences in their total content were found (0.69 to 1.35 mg/g DW), while flavonoids were only detected in trace amounts. Statistical results showed significantly higher antiradical activity in the colored accessions than in the white ones.


Subject(s)
Panicum , Starch , Phenols , Polyphenols , Edible Grain
7.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37760059

ABSTRACT

Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.0 in a specific ratio to induce the formation of nanoparticles (NPs). The process optimisation yielded a monodispersed population (PDI < 0.200) of negatively charged (-17 mV) NPs with an average diameter of 380 nm. RCE concentration influenced size, charge, and antioxidant capacity in a dose-dependent manner. NPs were also sensitive to pH increases from 4 to 7, showing a progressive breakdown. The encapsulation efficiency was 30%, with the retention of ACNs within the polymeric matrix being influenced by their chemical structure: diacylated and/or C3-triglucoside forms were more efficiently encapsulated than monoacylated C3-diglucosides. In conclusion, we report a promising, simple, and sustainable method to produce monodispersed NPs for ACN encapsulation and delivery. Evidence of differential binding of ACNs to NPs, dependent on specific acylation/glycosylation patterns, indicates that care must be taken in the choice of the appropriate NP formulation for the encapsulation of phenolic compounds.

8.
Food Chem ; 428: 136756, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37413837

ABSTRACT

Sicily (Italy) is the second producer of Opuntia ficus-indica (OFI) fruits after Mexico. To date, huge quantities of fruit are discarded during the selection for the fresh market, generating a large amount of by-product to be valorized. This study aimed to investigate on the composition of OFI discarded fruits from the main Sicilian productive areas, over two harvesting periods. Peel, seeds and whole fruit samples were characterized in terms of minerals and phenolic compounds through ICP-OES and HPLC-DAD-MS. Potassium, calcium and magnesium were the most abundant elements and peel samples showed the highest values. Seventeen phenolic compounds were detected in peel and whole fruit, including flavonoids, phenylpyruvic and hydroxycinnamic acids, while only phenolic acids were found in the seeds. A multivariate chemometric approach highlighted a correlation between the mineral and phenolic content and the different parts of the fruit as well as a significant influence of productive area.


Subject(s)
Antioxidants , Opuntia , Fruit/chemistry , Seeds/chemistry , Minerals , Phenols/analysis , Sicily
9.
Antioxidants (Basel) ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37507887

ABSTRACT

The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the transformation of oleuropein during the olive milling process, were evaluated and compared. Oils of different origins were evaluated aiming at verifying whether chemical differences in the phenolic composition of the dry extracts played a role in the metabolism and in maintaining the cellular redox state of AGS cells. The following key enzymes of some metabolic pathways were studied: lactate dehydrogenase, enolase, pyruvate kinase, glucose 6-phosphate dehydrogenase, citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and hexokinase. As confirmed through PCA analysis, pretreatments with the dry extracts of EVOOs at different concentrations appeared to be able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The studied phytocomplexes showed the ability to protect AGS cells from oxidative damage and the secoiridoid derivatives from both oleuropein and ligstroside contributed to the observed effects. The results suggested that EVOOs with medium to high concentrations of phenols can exert this protection.

10.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175669

ABSTRACT

Pâté is a by-product of olive oil production which represents an abundant source of phenolic compounds and can be used for food formulation, reducing its environmental impact and promoting a circular economy. In this context, the effects of a hydroalcoholic extract of pâté were evaluated for the first time in an AGS human cell line commonly used as model of gastric mucosa. Pâté was obtained from Tuscan olives; the total phenolic content was 16.6 mg/g dried extract, with verbascoside and secoiridoid derivatives as the most abundant phenols. The phenolic pâté extract did not alter viability, distribution of cell cycle phases or proliferation and migration of AGS cells at the tested concentrations. Seven enzymes were chosen to investigate the metabolic effect of the pâté extract in the context of oxidative stress. Pâté produced a statistically significant increase in the activity of key enzymes of some metabolic pathways: Lactate dehydrogenase, Enolase, Pyruvate kinase, Glucose 6-phosphate dehydrogenase, Citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and Hexokinase. Pre-treatments with the extract of pâté at 100 µg/mL or 200 µg/mL, as observed through PCA analysis, appeared able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The results indicate that dried pâté, due to its phenolic components, can be proposed as a new functional food ingredient.


Subject(s)
Hydrogen Peroxide , Olea , Humans , Olive Oil/pharmacology , Olive Oil/analysis , Phenols/pharmacology , Phenols/analysis , Plant Extracts/pharmacology , Plant Oils/pharmacology
11.
Molecules ; 28(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985747

ABSTRACT

Olives are very rich in phenolic compounds with important health-promoting properties. The profile and content of phenols in olive pulp and virgin olive oil are strongly influenced by the fruit ripening degree, but little is known concerning the evolution of phenolic compounds in the seed. In this work, the phenolic composition of seed from Tuscan cultivars (Frantoio, Moraiolo, Leccino) was studied over maturation. Starting from each seed sample, a phenolic extract was prepared and analyzed by HPLC-DAD-MS. Nüzhenide and nüzhenide 11-methyl oleoside were by far the most abundant phenolic compounds; their content reached up to 46 g/kg in dry seeds, although this diminished in the final stage of fruit maturation. At the same time, the phenolic composition of the pulp was also characterized over the course of maturation, showing that oleuropein was by far the most abundant compound, with concentrations comparable to those of nüzhenide and nüzhenide 11-methyl oleoside in the seeds. Overall, the total amount of phenols in seed dry extracts was significant, reaching approx. 100 g/kg. The chemically characterized dry phenolic extracts from seeds could be used for future biological assays aimed at evaluating the potential bioactivities of these phytocomplexes.


Subject(s)
Fruit , Olea , Olive Oil/analysis , Fruit/chemistry , Seeds/chemistry , Olea/chemistry , Phenols/chemistry , Plant Extracts/chemistry
12.
Antioxidants (Basel) ; 12(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36671006

ABSTRACT

For improving the management of the production chain of PGI Mantua pears (which comprises many varieties, including Abate Fetel), applying the cardinal principles of circular economy and sustainability, the fruits with diseases or defects were recovered for producing dried rounds of pears from the Abate Fetel cultivar, a new product with high nutritional value that extends the remaining life. This process led to the production of secondary and residual by-products, which are mainly composed of the highest and lowest part of the fruits, comprising seeds, pulps, peels and petioles. Hence, this study was focused on the valorization of these secondary by-products of Abate Fetel pears through the production of pear extracts using traditional and "green" extraction methods that involve the use of supercritical CO2 fluid extraction. The produced extracts, together with a reference solvent-derived extract, were analyzed by HPLC-ESI-MS, and in parallel, their direct and cellular antioxidant activity were assessed. Evidence has indicated that all the tested extracts reduced the H2O2-induced reactive oxygen species (ROS), lipid peroxidation and nitric oxide (NO) levels, respectively, in human intestinal Caco-2 cells. Hence, this study clearly suggests that extracts obtained from Mantuan PGI pear by-products may be used as valuable sources of bioactive upcycled phytocomplex for the development of dietary supplements and/or functional foods.

13.
Food Chem ; 403: 134338, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36358065

ABSTRACT

The effect of industrial drying processes on phenols and polysaccharides of olive pomace (pâté) and pomegranate peel was studied, with the aim to re-use pomegranate and olive oil by-products. Pomegranate peel (Wonderful and G1 varieties) was oven-dried at different temperatures, taking into account peel thickness and size. Pâté was freeze-dried and oven dried at 50-110 °C, at lab scale; then, an industrial drying system (150 °C) was compared to freeze-drying. All dried samples were analyzed in terms of phenolic and polysaccharides compounds. Drying at room temperature of small pieces of pomegranate peel guaranteed the highest humidity removal and recovery of phenols. Sugar analysis, DLS and 1H NMR confirmed that polysaccharide fractions were not significantly affected by the highest drying temperatures (42 °C for pomegranate, 150 °C for pâté). The two drying procedures at large scale were suitable for avoiding degradation of phenols, maintaining the same profiles of the corresponding freeze-dried samples.


Subject(s)
Lythraceae , Olea , Pomegranate , Olea/chemistry , Lythraceae/chemistry , Phenols/analysis , Polysaccharides
14.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36139804

ABSTRACT

Agri-food industry wastes and by-products include highly valuable components that can upgraded, providing low-cost bioactives or used as an alternative protein source. In this context, by-products from olive production and olive oil extraction process, i.e., seeds, can be fostered. In particular, this work was aimed at extracting and characterizing proteins for Olea europaea L. seeds and at producing two protein hydrolysates using alcalase and papain, respectively. Peptidomic analysis were performed, allowing to determine both medium- and short-sized peptides and to identify their potential biological activities. Moreover, an extensive characterization of the antioxidant properties of Olea europaea L. seed hydrolysates was carried out both in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH), by ferric reducing antioxidant power (FRAP), and by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays, respectively, and at cellular level by measuring the ability of these hydrolysates to significant reduce the H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels in human intestinal Caco-2 cells. The results of the both hydrolysates showed significant antioxidant properties by reducing the free radical scavenging activities up to 65.0 ± 0.1% for the sample hydrolyzed with alcalase and up to 75.7 ± 0.4% for the papain hydrolysates tested at 5 mg/mL, respectively. Moreover, similar values were obtained by the ABTS assays, whereas the FRAP increased up to 13,025.0 ± 241.5% for the alcalase hydrolysates and up to 12,462.5 ± 311.9% for the papain hydrolysates, both tested at 1 mg/mL. According to the in vitro results, both papain and alcalase hydrolysates restore the cellular ROS levels up 130.4 ± 4.24% and 128.5 ± 3.60%, respectively, at 0.1 mg/mL and reduce the lipid peroxidation levels up to 109.2 ± 7.95% and 73.0 ± 7.64%, respectively, at 1.0 mg/mL. In addition, results underlined that the same hydrolysates reduced the activity of dipeptidyl peptidase-IV (DPP-IV) in vitro and at cellular levels up to 42.9 ± 6.5% and 38.7 ± 7.2% at 5.0 mg/mL for alcalase and papain hydrolysates, respectively. Interestingly, they stimulate the release and stability of glucagon-like peptide 1 (GLP-1) hormone through an increase of its levels up to 660.7 ± 21.9 pM and 613.4 ± 39.1 pM for alcalase and papain hydrolysates, respectively. Based on these results, olive seed hydrolysates may represent new ingredients with antioxidant and anti-diabetic properties for the development of nutraceuticals and functional foods for the prevention of metabolic syndrome onset.

15.
J Pharm Biomed Anal ; 220: 114991, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-35994943

ABSTRACT

Acmella oleracea L. is an edible and medicinal plant commonly known for its local anaesthetic effect induced by the alkylamide spilanthol. It is also rich of secondary metabolites of biological interest, mainly phenolic acids and glycosylated flavonoids. This study evaluated for the first time alkylamides and phenolic compounds in aerial parts and roots of seedlings grown in vitro and produced from single seed and from regenerating lines. The extracts obtained showed similar chemical profiles and the caffeic acid derivatives were the most abundant phenolic compounds. Spilanthol was prevalent in the aerial parts, especially in samples of seedlings obtained from regenerating lines, in which reached maximum value of 1.72 mg/g dried matter (DM). The roots contained a lower content of alkylamides, while showing twice as much total phenols (11.19 mg/g DM) as the aerial parts. A hexane fractionation step allowed to recover spilanthol and its derivatives in a concentrated extract, which reached a value of 63.4 mg/g dried extract in the aerial parts from seedlings from regenerating lines. Hydroalcoholic dried extracts showed high yields (30-45 % on dried matter) and those obtained from aerial parts contained up to 5.69 mg/g of spilanthol.


Subject(s)
Asteraceae , Hexanes , Asteraceae/chemistry , Caffeic Acids , Flavonoids , Phenols/pharmacology , Plant Components, Aerial , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyunsaturated Alkamides , Seedlings
16.
Exp Brain Res ; 240(7-8): 2205-2217, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35768733

ABSTRACT

Some people with Parkinson's disease (PD) have disruptions in motor output during rapid isometric muscle contractions. Measures of such disruptions (motor segmentation) may help clarify disease subtype, progression, or effects of therapeutic interventions. We investigated the potential utility of segmentation measures by testing two hypotheses that are fundamental to measurement and evaluation. First, measures of motor segmentation are reliable from day to day (intraclass correlation coefficient > 0.8). Second, that measures of motor segmentation have the sensitivity to differentiate between people with PD and older adults. 10 subjects with PD had a mean age of 70.1 years, Hoehn-Yahr stage < 3, and median levodopa equivalent daily dose of 350 mg. Older adult (mean age 81.9 years) reference data are from a previously published study. Each subject provided approximately 87 rapid isometric index finger abduction force pulses up to 65% of their maximal isometric force for calculation of force pulse measures. Measures were computed for the excitation, transition, and relaxation phases of each force pulse. Measures of motor segmentation had high reliability and presented large (Cohen's D > 0.8) and significant (p < 0.05) group differences. In bivariate plots of selected measures, motor segmentation marked a departure of PD from age-related slowing. Across all subjects, greater segmentation was associated with greater impairments in rate control and a longer time to reach peak force (all Spearman's ρ > 0.8). These results support the potential utility of the motor segmentation measures by satisfying requirements for reliability and the sensitivity to indicate deviations from age-related slowing in motor output.


Subject(s)
Parkinson Disease , Aged , Aged, 80 and over , Humans , Isometric Contraction/physiology , Levodopa , Movement , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Reproducibility of Results
17.
J Sci Food Agric ; 102(6): 2515-2525, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34676895

ABSTRACT

BACKGROUND: Much effort has recently been spent for re-using virgin olive oil by-products as nutraceutical ingredients for human diet thanks to their richness in bioactive phenols, but their management is not easy for producers. We aimed to provide useful information for a better management of fresh olive pomace before drying, by studying the phenolic and volatile compounds transformations phenomena of fresh olive pomace stored under different conditions planned to simulate controlled and uncontrolled temperature conditions in olive oil mills. RESULTS: The evolution of the phenolic and volatile compounds was studied by high-performance liquid chromatography-diode array detector mass spectrometry (HPLC-DAD-MS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The phenolic profile varied rapidly during storage: the verbascoside content decreased about 70% after 17 days even at 4 °C, while the content of simple phenols such as hydroxytyrosol and caffeic acid increased over time. The low temperature was able to slow down these phenomena. A total of 94 volatile organic compounds (VOCs) were detected in the fresh olive pomace, with a prevalence of lipoxygenase (LOX) VOCs (78%), mainly aldehydes (19 490.9 µg kg-1 ) despite the higher number of alcohols. A decrease in LOX volatiles and a quick development of the ones linked to off-flavors (carboxylic acids, alcohols, acetates) were observed, in particular after 4 days of storage at room temperature. Only storage at 4 °C allowed these phenomena to be slowed down. CONCLUSION: To preserve the natural phenolic phytocomplex of fresh olive pomace before drying and to avoid off-flavors development, storage in open containers must be avoided and a short storage in cold rooms (7-10 days) is to be preferred. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Olea , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Humans , Olea/chemistry , Olive Oil/chemistry , Phenols/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis
18.
Foods ; 10(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34829103

ABSTRACT

Phenolic and triterpenoid compounds of the olive tree are recognized as having a key role in health promotion, thanks to their multiple protective actions in humans. To expand the source of these bioactive compounds, the phenolic and triterpenoid profiles of leaf, branch, destoned fruit, destoned pomace, shell, seed, and extra virgin olive oil from the Frantoio, Leccino, and Moraiolo olive cultivars were simultaneously characterized by HPLC-DAD-MS. Overall, 43 molecules were quantitated and expressed on the obtained dry extracts. Oleuropein was mainly concentrated in branches (82.72 g/kg), fruits (55.79 g/kg), leaves (36.71 g/kg), and shells (1.26 g/kg), verbascoside (4.88 g/kg) in pomace, and nüzhenide 11-methyl oleoside (90.91 g/kg) in seeds. Among triterpenoids, which were absent in shells, the highest amount of oleanolic acid was found in olive leaves (11.88 g/kg). HCT-116 colorectal cells were chosen to assess the cytotoxicity of the dry extract, using the phytocomplex from Frantoio, which was the richest in phenols and triterpenoids. The IC50 was also determined for 13 pure molecules (phenols and terpenoids) detected in the extracts. The greatest inhibition on the cell's proliferation was induced by the branch dry extract (IC50 88.25 µg/mL) and by ursolic acid (IC50 24 µM). A dose-dependent relationship was observed for the tested extracts.

19.
Antioxidants (Basel) ; 10(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34356366

ABSTRACT

Two extra virgin olive oil (EVOO) phenolic extracts (BUO and OMN) modulate DPP-IV activity. The in vitro DPP-IV activity assay was performed at the concentrations of 1, 10, 100, 500, and 1000 µg/mL, showing a dose-dependent inhibition by 6.8 ± 1.9, 17.4 ± 6.1, 37.9 ± 2.4, 57.8 ± 2.9, and 81 ± 1.4% for BUO and by 5.4 ± 1.7, 8.9 ± 0.4, 28.4 ± 7.2, 52 ± 1.3, and 77.5 ± 3.5% for OMN. Moreover, both BUO and OMN reduced the DPP-IV activity expressed by Caco-2 cells by 2.9 ± 0.7, 44.4 ± 0.7, 61.2 ± 1.8, and 85 ± 4.2% and by 3 ± 1.9, 35 ± 9.4, 60 ± 7.2, and 82 ± 2.8%, respectively, at the same doses. The concentration of the most abundant and representative secoiridoids within both extracts was analyzed by nuclear magnetic resonance (1H-NMR). Oleuropein, oleacein, oleocanthal, hydroxytyrosol, and tyrosol, tested alone, reduced the DPP-IV activity, with IC50 of 472.3 ± 21.7, 187 ± 11.4, 354.5 ± 12.7, 741.6 ± 35.7, and 1112 ± 55.6 µM, respectively. Finally, in silico molecular docking simulations permitted the study of the binding mode of these compounds.

20.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198771

ABSTRACT

This study investigated within-plant variability of the main bioactive compounds in rosemary (Rosmarinus officinalis L.). Volatile terpenes, including the enantiomeric distribution of monoterpenes, and phenols were analyzed in young and mature foliar, cortical and xylem tissues. In addition, antimicrobial activity of rosmarinic acid and selected terpenes was evaluated against two rosemary pathogens, Alternaria alternata and Pseudomonas viridiflava. Data showed that total concentration and relative contents of terpenes changed in relation to tissue source and age. Their highest total concentration was observed in the young leaves, followed by mature leaves, cortical and xylem tissues. Rosmarinic acid and carnosic acid contents did not show significant differences between leaf tissues of different ages, while young and mature samples showed variations in the content of four flavonoids. These results are useful for a more targeted harvesting of rosemary plants, in order to produce high-quality essential oils and phenolic extracts. Microbial tests showed that several terpenes and rosmarinic acid significantly inhibited the growth of typical rosemary pathogens. Overall, results on antimicrobial activity suggest the potential application of these natural compounds as biochemical markers in breeding programs aimed to select new chemotypes less susceptible to pathogen attacks, and as eco-friendly chemical alternatives to synthetic pesticides.


Subject(s)
Anti-Infective Agents/pharmacology , Phenols/pharmacology , Rosmarinus/chemistry , Terpenes/pharmacology , Alternaria/drug effects , Alternaria/growth & development , Anti-Infective Agents/chemistry , Cinnamates/pharmacology , Depsides/pharmacology , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Organ Specificity , Phenols/chemistry , Pseudomonas/drug effects , Pseudomonas/growth & development , Rosmarinus/microbiology , Terpenes/chemistry , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...