Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 338: 1-4, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34197822

ABSTRACT

This paper describes a simplified affinity precipitation process for the purification of mAbs from complex mixtures using elastin-like polypeptide fused to a single Z domain of protein A (ELP-Z). This approach eliminates several steps in the original process by directly extracting the mAb from the affinity precipitate, without the need for resolubilization. The efficacy of this elution without resolubilization (EWR) approach for obtaining pure mAb is demonstrated and the effects of mixing are examined. This simplification of the affinity precipitation process may facilitate the implementation of ELP-Z based mAb bioprocessing, particularly in a continuous scenario.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Elastin , Peptides , Staphylococcal Protein A
2.
Biotechnol J ; 11(10): 1320-1331, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27447837

ABSTRACT

Coiled Flow Inverter Reactor (CFIR) has recently been explored for facilitating continuous operation of several unit operations involved in downstream processing of biopharmaceuticals such as viral inactivation and protein refolding. The application of CFIR for continuous precipitation of clarified cell culture supernatant has been explored. The pH based precipitation is optimized in the batch mode and then in the continuous mode in CFIR using a design of experiments (DOE) study. Improved clearance of host cell DNA (52× vs. 39× in batch), improved clearance of host cell proteins (HCP) (7× vs. 6× in batch) and comparable recovery (90 vs. 91.5 % in batch) are observed along with six times higher productivity. To further demonstrate wider applicability of CFIR in performing continuous precipitation, two more case studies involving use of two different precipitation protocols (CaCl2 based and caprylic acid based) are also performed. In both cases, clearance of host cell DNA, HCP, and product recovery are found to be comparable or better in CFIR than in batch operations. Moreover, increase in productivity of 16 times (CaCl2 based) and eight times (caprylic acid based) is obtained for the two precipitation protocols, respectively. The data clearly demonstrate that CFIR can be seamlessly integrated into a continuous bioprocess train for performing continuous precipitation of clarified cell culture supernatant. To our knowledge this is the first report of such use.


Subject(s)
Biotechnology/instrumentation , DNA/analysis , Proteins/analysis , Animals , Bioreactors , Biotechnology/methods , CHO Cells , Calcium Chloride/chemistry , Caprylates/chemistry , Cell Culture Techniques , Chemical Precipitation , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL